
http://www.id3.org/id3v2.4.0-structure.txt

Informal standard M. Nilsson
Document: id3v2.4.0-structure.txt 1st November 2000

 ID3 tag version 2.4.0 - Main Structure

Status of this document

 This document is an informal standard and replaces the ID3v2.3.0
 standard [ID3v2]. A formal standard will use another revision number
 even if the content is identical to document. The contents in this
 document may change for clarifications but never for added or altered
 functionallity.

 Distribution of this document is unlimited.

Abstract

 This document describes the main structure of ID3v2.4.0, which is a
 revised version of the ID3v2 informal standard [ID3v2] version
 2.3.0. The ID3v2 offers a flexible way of storing audio meta
 information within the audio file itself. The information may be
 technical information, such as equalisation curves, as well as
 title, performer, copyright etc.

 ID3v2.4.0 is meant to be as close as possible to ID3v2.3.0 in order
 to allow for implementations to be revised as easily as possible.

1. Table of contents

 Status of this document
 Abstract
 1. Table of contents
 2. Conventions in this document
 2. Standard overview
 3. ID3v2 overview
 3.1. ID3v2 header
 3.2. ID3v2 extended header
 3.3. Padding
 3.4. ID3v2 footer
 4. ID3v2 frames overview

http://www.id3.org/id3v2.4.0-structure.txt (1 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 4.1. Frame header flags
 4.1.1. Frame status flags
 4.1.2. Frame format flags
 5. Tag location
 6. Unsynchronisation
 6.1. The unsynchronisation scheme
 6.2. Synchsafe integers
 7. Copyright
 8. References
 9. Author's Address

2. Conventions in this document

 Text within "" is a text string exactly as it appears in a tag.
 Numbers preceded with $ are hexadecimal and numbers preceded with %
 are binary. $xx is used to indicate a byte with unknown content. %x
 is used to indicate a bit with unknown content. The most significant
 bit (MSB) of a byte is called 'bit 7' and the least significant bit
 (LSB) is called 'bit 0'.

 A tag is the whole tag described in this document. A frame is a block
 of information in the tag. The tag consists of a header, frames and
 optional padding. A field is a piece of information; one value, a
 string etc. A numeric string is a string that consists of the
 characters "0123456789" only.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [KEYWORDS].

3. ID3v2 overview

 ID3v2 is a general tagging format for audio, which makes it possible
 to store meta data about the audio inside the audio file itself. The
 ID3 tag described in this document is mainly targeted at files
 encoded with MPEG-1/2 layer I, MPEG-1/2 layer II, MPEG-1/2 layer III
 and MPEG-2.5, but may work with other types of encoded audio or as a
 stand alone format for audio meta data.

 ID3v2 is designed to be as flexible and expandable as possible to
 meet new meta information needs that might arise. To achieve that
 ID3v2 is constructed as a container for several information blocks,

http://www.id3.org/id3v2.4.0-structure.txt (2 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 called frames, whose format need not be known to the software that
 encounters them. At the start of every frame is an unique and
 predefined identifier, a size descriptor that allows software to skip
 unknown frames and a flags field. The flags describes encoding
 details and if the frame should remain in the tag, should it be
 unknown to the software, if the file is altered.

 The bitorder in ID3v2 is most significant bit first (MSB). The
 byteorder in multibyte numbers is most significant byte first (e.g.
 $12345678 would be encoded $12 34 56 78), also known as big endian
 and network byte order.

 Overall tag structure:

 +-----------------------------+
 | Header (10 bytes) |
 +-----------------------------+
 | Extended Header |
 | (variable length, OPTIONAL) |
 +-----------------------------+
 | Frames (variable length) |
 +-----------------------------+
 | Padding |
 | (variable length, OPTIONAL) |
 +-----------------------------+
 | Footer (10 bytes, OPTIONAL) |
 +-----------------------------+

 In general, padding and footer are mutually exclusive. See details in
 sections 3.3, 3.4 and 5.

3.1. ID3v2 header

 The first part of the ID3v2 tag is the 10 byte tag header, laid out
 as follows:

 ID3v2/file identifier "ID3"
 ID3v2 version $04 00
 ID3v2 flags %abcd0000
 ID3v2 size 4 * %0xxxxxxx

 The first three bytes of the tag are always "ID3", to indicate that
 this is an ID3v2 tag, directly followed by the two version bytes. The

http://www.id3.org/id3v2.4.0-structure.txt (3 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 first byte of ID3v2 version is its major version, while the second
 byte is its revision number. In this case this is ID3v2.4.0. All
 revisions are backwards compatible while major versions are not. If
 software with ID3v2.4.0 and below support should encounter version
 five or higher it should simply ignore the whole tag. Version or
 revision will never be $FF.

 The version is followed by the ID3v2 flags field, of which currently
 four flags are used.

 a - Unsynchronisation

 Bit 7 in the 'ID3v2 flags' indicates whether or not
 unsynchronisation is applied on all frames (see section 6.1 for
 details); a set bit indicates usage.

 b - Extended header

 The second bit (bit 6) indicates whether or not the header is
 followed by an extended header. The extended header is described in
 section 3.2. A set bit indicates the presence of an extended
 header.

 c - Experimental indicator

 The third bit (bit 5) is used as an 'experimental indicator'. This
 flag SHALL always be set when the tag is in an experimental stage.

 d - Footer present

 Bit 4 indicates that a footer (section 3.4) is present at the very
 end of the tag. A set bit indicates the presence of a footer.

 All the other flags MUST be cleared. If one of these undefined flags
 are set, the tag might not be readable for a parser that does not
 know the flags function.

 The ID3v2 tag size is stored as a 32 bit synchsafe integer (section
 6.2), making a total of 28 effective bits (representing up to 256MB).

http://www.id3.org/id3v2.4.0-structure.txt (4 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 The ID3v2 tag size is the sum of the byte length of the extended
 header, the padding and the frames after unsynchronisation. If a
 footer is present this equals to ('total size' - 20) bytes, otherwise
 ('total size' - 10) bytes.

 An ID3v2 tag can be detected with the following pattern:
 $49 44 33 yy yy xx zz zz zz zz
 Where yy is less than $FF, xx is the 'flags' byte and zz is less than
 $80.

3.2. Extended header

 The extended header contains information that can provide further
 insight in the structure of the tag, but is not vital to the correct
 parsing of the tag information; hence the extended header is
 optional.

 Extended header size 4 * %0xxxxxxx
 Number of flag bytes $01
 Extended Flags $xx

 Where the 'Extended header size' is the size of the whole extended
 header, stored as a 32 bit synchsafe integer. An extended header can
 thus never have a size of fewer than six bytes.

 The extended flags field, with its size described by 'number of flag
 bytes', is defined as:

 %0bcd0000

 Each flag that is set in the extended header has data attached, which
 comes in the order in which the flags are encountered (i.e. the data
 for flag 'b' comes before the data for flag 'c'). Unset flags cannot
 have any attached data. All unknown flags MUST be unset and their
 corresponding data removed when a tag is modified.

 Every set flag's data starts with a length byte, which contains a
 value between 0 and 128 ($00 - $7f), followed by data that has the
 field length indicated by the length byte. If a flag has no attached
 data, the value $00 is used as length byte.

http://www.id3.org/id3v2.4.0-structure.txt (5 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 b - Tag is an update

 If this flag is set, the present tag is an update of a tag found
 earlier in the present file or stream. If frames defined as unique
 are found in the present tag, they are to override any
 corresponding ones found in the earlier tag. This flag has no
 corresponding data.

 Flag data length $00

 c - CRC data present

 If this flag is set, a CRC-32 [ISO-3309] data is included in the
 extended header. The CRC is calculated on all the data between the
 header and footer as indicated by the header's tag length field,
 minus the extended header. Note that this includes the padding (if
 there is any), but excludes the footer. The CRC-32 is stored as an
 35 bit synchsafe integer, leaving the upper four bits always
 zeroed.

 Flag data length $05
 Total frame CRC 5 * %0xxxxxxx

 d - Tag restrictions

 For some applications it might be desired to restrict a tag in more
 ways than imposed by the ID3v2 specification. Note that the
 presence of these restrictions does not affect how the tag is
 decoded, merely how it was restricted before encoding. If this flag
 is set the tag is restricted as follows:

 Flag data length $01
 Restrictions %ppqrrstt

 p - Tag size restrictions

 00 No more than 128 frames and 1 MB total tag size.
 01 No more than 64 frames and 128 KB total tag size.
 10 No more than 32 frames and 40 KB total tag size.
 11 No more than 32 frames and 4 KB total tag size.

 q - Text encoding restrictions

 0 No restrictions

http://www.id3.org/id3v2.4.0-structure.txt (6 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 1 Strings are only encoded with ISO-8859-1 [ISO-8859-1] or
 UTF-8 [UTF-8].

 r - Text fields size restrictions

 00 No restrictions
 01 No string is longer than 1024 characters.
 10 No string is longer than 128 characters.
 11 No string is longer than 30 characters.

 Note that nothing is said about how many bytes is used to
 represent those characters, since it is encoding dependent. If a
 text frame consists of more than one string, the sum of the
 strungs is restricted as stated.

 s - Image encoding restrictions

 0 No restrictions
 1 Images are encoded only with PNG [PNG] or JPEG [JFIF].

 t - Image size restrictions

 00 No restrictions
 01 All images are 256x256 pixels or smaller.
 10 All images are 64x64 pixels or smaller.
 11 All images are exactly 64x64 pixels, unless required
 otherwise.

3.3. Padding

 It is OPTIONAL to include padding after the final frame (at the end
 of the ID3 tag), making the size of all the frames together smaller
 than the size given in the tag header. A possible purpose of this
 padding is to allow for adding a few additional frames or enlarge
 existing frames within the tag without having to rewrite the entire
 file. The value of the padding bytes must be $00. A tag MUST NOT have
 any padding between the frames or between the tag header and the
 frames. Furthermore it MUST NOT have any padding when a tag footer is
 added to the tag.

3.4. ID3v2 footer

http://www.id3.org/id3v2.4.0-structure.txt (7 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 To speed up the process of locating an ID3v2 tag when searching from
 the end of a file, a footer can be added to the tag. It is REQUIRED
 to add a footer to an appended tag, i.e. a tag located after all
 audio data. The footer is a copy of the header, but with a different
 identifier.

 ID3v2 identifier "3DI"
 ID3v2 version $04 00
 ID3v2 flags %abcd0000
 ID3v2 size 4 * %0xxxxxxx

4. ID3v2 frame overview

 All ID3v2 frames consists of one frame header followed by one or more
 fields containing the actual information. The header is always 10
 bytes and laid out as follows:

 Frame ID $xx xx xx xx (four characters)
 Size 4 * %0xxxxxxx
 Flags $xx xx

 The frame ID is made out of the characters capital A-Z and 0-9.
 Identifiers beginning with "X", "Y" and "Z" are for experimental
 frames and free for everyone to use, without the need to set the
 experimental bit in the tag header. Bear in mind that someone else
 might have used the same identifier as you. All other identifiers are
 either used or reserved for future use.

 The frame ID is followed by a size descriptor containing the size of
 the data in the final frame, after encryption, compression and
 unsynchronisation. The size is excluding the frame header ('total
 frame size' - 10 bytes) and stored as a 32 bit synchsafe integer.

 In the frame header the size descriptor is followed by two flag
 bytes. These flags are described in section 4.1.

 There is no fixed order of the frames' appearance in the tag,
 although it is desired that the frames are arranged in order of
 significance concerning the recognition of the file. An example of
 such order: UFID, TIT2, MCDI, TRCK ...

 A tag MUST contain at least one frame. A frame must be at least 1
 byte big, excluding the header.

http://www.id3.org/id3v2.4.0-structure.txt (8 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 If nothing else is said, strings, including numeric strings and URLs
 [URL], are represented as ISO-8859-1 [ISO-8859-1] characters in the
 range $20 - $FF. Such strings are represented in frame descriptions
 as <text string>, or <full text string> if newlines are allowed. If
 nothing else is said newline character is forbidden. In ISO-8859-1 a
 newline is represented, when allowed, with $0A only.

 Frames that allow different types of text encoding contains a text
 encoding description byte. Possible encodings:

 $00 ISO-8859-1 [ISO-8859-1]. Terminated with $00.
 $01 UTF-16 [UTF-16] encoded Unicode [UNICODE] with BOM. All
 strings in the same frame SHALL have the same byteorder.
 Terminated with $00 00.
 $02 UTF-16BE [UTF-16] encoded Unicode [UNICODE] without BOM.
 Terminated with $00 00.
 $03 UTF-8 [UTF-8] encoded Unicode [UNICODE]. Terminated with $00.

 Strings dependent on encoding are represented in frame descriptions
 as <text string according to encoding>, or <full text string
 according to encoding> if newlines are allowed. Any empty strings of
 type $01 which are NULL-terminated may have the Unicode BOM followed
 by a Unicode NULL ($FF FE 00 00 or $FE FF 00 00).

 The timestamp fields are based on a subset of ISO 8601. When being as
 precise as possible the format of a time string is
 yyyy-MM-ddTHH:mm:ss (year, "-", month, "-", day, "T", hour (out of
 24), ":", minutes, ":", seconds), but the precision may be reduced by
 removing as many time indicators as wanted. Hence valid timestamps
 are
 yyyy, yyyy-MM, yyyy-MM-dd, yyyy-MM-ddTHH, yyyy-MM-ddTHH:mm and
 yyyy-MM-ddTHH:mm:ss. All time stamps are UTC. For durations, use
 the slash character as described in 8601, and for multiple non-
 contiguous dates, use multiple strings, if allowed by the frame
 definition.

 The three byte language field, present in several frames, is used to
 describe the language of the frame's content, according to ISO-639-2
 [ISO-639-2]. The language should be represented in lower case. If the
 language is not known the string "XXX" should be used.

 All URLs [URL] MAY be relative, e.g. "picture.png", "../doc.txt".

http://www.id3.org/id3v2.4.0-structure.txt (9 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 If a frame is longer than it should be, e.g. having more fields than
 specified in this document, that indicates that additions to the
 frame have been made in a later version of the ID3v2 standard. This
 is reflected by the revision number in the header of the tag.

4.1. Frame header flags

 In the frame header the size descriptor is followed by two flag
 bytes. All unused flags MUST be cleared. The first byte is for
 'status messages' and the second byte is a format description. If an
 unknown flag is set in the first byte the frame MUST NOT be changed
 without that bit cleared. If an unknown flag is set in the second
 byte the frame is likely to not be readable. Some flags in the second
 byte indicates that extra information is added to the header. These
 fields of extra information is ordered as the flags that indicates
 them. The flags field is defined as follows (l and o left out because
 ther resemblence to one and zero):

 %0abc0000 %0h00kmnp

 Some frame format flags indicate that additional information fields
 are added to the frame. This information is added after the frame
 header and before the frame data in the same order as the flags that
 indicates them. I.e. the four bytes of decompressed size will precede
 the encryption method byte. These additions affects the 'frame size'
 field, but are not subject to encryption or compression.

 The default status flags setting for a frame is, unless stated
 otherwise, 'preserved if tag is altered' and 'preserved if file is
 altered', i.e. %00000000.

4.1.1. Frame status flags

 a - Tag alter preservation

 This flag tells the tag parser what to do with this frame if it is
 unknown and the tag is altered in any way. This applies to all
 kinds of alterations, including adding more padding and reordering
 the frames.

 0 Frame should be preserved.
 1 Frame should be discarded.

http://www.id3.org/id3v2.4.0-structure.txt (10 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 b - File alter preservation

 This flag tells the tag parser what to do with this frame if it is
 unknown and the file, excluding the tag, is altered. This does not
 apply when the audio is completely replaced with other audio data.

 0 Frame should be preserved.
 1 Frame should be discarded.

 c - Read only

 This flag, if set, tells the software that the contents of this
 frame are intended to be read only. Changing the contents might
 break something, e.g. a signature. If the contents are changed,
 without knowledge of why the frame was flagged read only and
 without taking the proper means to compensate, e.g. recalculating
 the signature, the bit MUST be cleared.

4.1.2. Frame format flags

 h - Grouping identity

 This flag indicates whether or not this frame belongs in a group
 with other frames. If set, a group identifier byte is added to the
 frame. Every frame with the same group identifier belongs to the
 same group.

 0 Frame does not contain group information
 1 Frame contains group information

 k - Compression

 This flag indicates whether or not the frame is compressed.
 A 'Data Length Indicator' byte MUST be included in the frame.

 0 Frame is not compressed.
 1 Frame is compressed using zlib [zlib] deflate method.
 If set, this requires the 'Data Length Indicator' bit
 to be set as well.

http://www.id3.org/id3v2.4.0-structure.txt (11 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 m - Encryption

 This flag indicates whether or not the frame is encrypted. If set,
 one byte indicating with which method it was encrypted will be
 added to the frame. See description of the ENCR frame for more
 information about encryption method registration. Encryption
 should be done after compression. Whether or not setting this flag
 requires the presence of a 'Data Length Indicator' depends on the
 specific algorithm used.

 0 Frame is not encrypted.
 1 Frame is encrypted.

 n - Unsynchronisation

 This flag indicates whether or not unsynchronisation was applied
 to this frame. See section 6 for details on unsynchronisation.
 If this flag is set all data from the end of this header to the
 end of this frame has been unsynchronised. Although desirable, the
 presence of a 'Data Length Indicator' is not made mandatory by
 unsynchronisation.

 0 Frame has not been unsynchronised.
 1 Frame has been unsyrchronised.

 p - Data length indicator

 This flag indicates that a data length indicator has been added to
 the frame. The data length indicator is the value one would write
 as the 'Frame length' if all of the frame format flags were
 zeroed, represented as a 32 bit synchsafe integer.

 0 There is no Data Length Indicator.
 1 A data length Indicator has been added to the frame.

5. Tag location

 The default location of an ID3v2 tag is prepended to the audio so
 that players can benefit from the information when the data is
 streamed. It is however possible to append the tag, or make a
 prepend/append combination. When deciding upon where an unembedded

http://www.id3.org/id3v2.4.0-structure.txt (12 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 tag should be located, the following order of preference SHOULD be
 considered.

 1. Prepend the tag.

 2. Prepend a tag with all vital information and add a second tag
at
 the end of the file, before tags from other tagging systems. The
 first tag is required to have a SEEK frame.

 3. Add a tag at the end of the file, before tags from other tagging
 systems.

 In case 2 and 3 the tag can simply be appended if no other known tags
 are present. The suggested method to find ID3v2 tags are:

 1. Look for a prepended tag using the pattern found in section 3.1.

 2. If a SEEK frame was found, use its values to guide further
 searching.

 3. Look for a tag footer, scanning from the back of the file.

 For every new tag that is found, the old tag should be discarded
 unless the update flag in the extended header (section 3.2) is set.

6. Unsynchronisation

 The only purpose of unsynchronisation is to make the ID3v2 tag as
 compatible as possible with existing software and hardware. There is
 no use in 'unsynchronising' tags if the file is only to be processed
 only by ID3v2 aware software and hardware. Unsynchronisation is only
 useful with tags in MPEG 1/2 layer I, II and III, MPEG 2.5 and AAC
 files.

6.1. The unsynchronisation scheme

 Whenever a false synchronisation is found within the tag, one zeroed
 byte is inserted after the first false synchronisation byte. The
 format of synchronisations that should be altered by ID3 encoders is
 as follows:

http://www.id3.org/id3v2.4.0-structure.txt (13 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 %11111111 111xxxxx

 and should be replaced with:

 %11111111 00000000 111xxxxx

 This has the side effect that all $FF 00 combinations have to be
 altered, so they will not be affected by the decoding process.
 Therefore all the $FF 00 combinations have to be replaced with the
 $FF 00 00 combination during the unsynchronisation.

 To indicate usage of the unsynchronisation, the unsynchronisation
 flag in the frame header should be set. This bit MUST be set if the
 frame was altered by the unsynchronisation and SHOULD NOT be set if
 unaltered. If all frames in the tag are unsynchronised the
 unsynchronisation flag in the tag header SHOULD be set. It MUST NOT
 be set if the tag has a frame which is not unsynchronised.

 Assume the first byte of the audio to be $FF. The special case when
 the last byte of the last frame is $FF and no padding nor footer is
 used will then introduce a false synchronisation. This can be solved
 by adding a footer, adding padding or unsynchronising the frame and
 add $00 to the end of the frame data, thus adding more byte to the
 frame size than a normal unsynchronisation would. Although not
 preferred, it is allowed to apply the last method on all frames
 ending with $FF.

 It is preferred that the tag is either completely unsynchronised or
 not unsynchronised at all. A completely unsynchronised tag has no
 false synchonisations in it, as defined above, and does not end with
 $FF. A completely non-unsynchronised tag contains no unsynchronised
 frames, and thus the unsynchronisation flag in the header is cleared.

 Do bear in mind, that if compression or encryption is used, the
 unsynchronisation scheme MUST be applied afterwards. When decoding an
 unsynchronised frame, the unsynchronisation scheme MUST be reversed
 first, encryption and decompression afterwards.

6.2. Synchsafe integers

 In some parts of the tag it is inconvenient to use the
 unsychronisation scheme because the size of unsynchronised data is
 not known in advance, which is particularly problematic with size

http://www.id3.org/id3v2.4.0-structure.txt (14 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 descriptors. The solution in ID3v2 is to use synchsafe integers, in
 which there can never be any false synchs. Synchsafe integers are
 integers that keep its highest bit (bit 7) zeroed, making seven bits
 out of eight available. Thus a 32 bit synchsafe integer can store 28
 bits of information.

 Example:

 255 (%11111111) encoded as a 16 bit synchsafe integer is 383
 (%00000001 01111111).

7. Copyright

 Copyright (C) Martin Nilsson 2000. All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that a reference to this document is included on all
 such copies and derivative works. However, this document itself may
 not be modified in any way and reissued as the original document.

 The limited permissions granted above are perpetual and will not be
 revoked.

 This document and the information contained herein is provided on an
 'AS IS' basis and THE AUTHORS DISCLAIMS ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

8. References

 [ID3v2] Martin Nilsson, 'ID3v2 informal standard'.

 <url:http://www.id3.org/id3v2.3.0.txt>

 [ISO-639-2] ISO/FDIS 639-2.
 'Codes for the representation of names of languages, Part 2: Alpha-3
 code.' Technical committee / subcommittee: TC 37 / SC 2

http://www.id3.org/id3v2.4.0-structure.txt (15 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 [ISO-3309] ISO 3309
 'Information Processing Systems--Data Communication High-Level Data
 Link Control Procedure--Frame Structure', IS 3309, October 1984, 3rd
 Edition.

 [ISO-8859-1] ISO/IEC DIS 8859-1.
 '8-bit single-byte coded graphic character sets, Part 1: Latin
 alphabet No. 1.' Technical committee / subcommittee: JTC 1 / SC 2

 [JFIF] 'JPEG File Interchange Format, version 1.02'

 <url:http://www.w3.org/Graphics/JPEG/jfif.txt>

 [KEYWORDS] S. Bradner, 'Key words for use in RFCs to Indicate
 Requirement Levels', RFC 2119, March 1997.

 <url:ftp://ftp.isi.edu/in-notes/rfc2119.txt>

 [MPEG] ISO/IEC 11172-3:1993.
 'Coding of moving pictures and associated audio for digital storage
 media at up to about 1,5 Mbit/s, Part 3: Audio.'
 Technical committee / subcommittee: JTC 1 / SC 29
 and
 ISO/IEC 13818-3:1995
 'Generic coding of moving pictures and associated audio information,
 Part 3: Audio.'
 Technical committee / subcommittee: JTC 1 / SC 29
 and
 ISO/IEC DIS 13818-3
 'Generic coding of moving pictures and associated audio information,
 Part 3: Audio (Revision of ISO/IEC 13818-3:1995)'

 [PNG] 'Portable Network Graphics, version 1.0'

 <url:http://www.w3.org/TR/REC-png-multi.html>

 [UNICODE] The Unicode Consortium,
 'The Unicode Standard Version 3.0', ISBN 0-201-61633-5.

 <url:http://www.unicode.org/unicode/standard/versions/Unicode3.0.htm>

 [URL] T. Berners-Lee, L. Masinter & M. McCahill, 'Uniform Resource
 Locators (URL)', RFC 1738, December 1994.

http://www.id3.org/id3v2.4.0-structure.txt (16 of 17)4/12/2006 10:58:55 PM

http://www.id3.org/id3v2.4.0-structure.txt

 <url:ftp://ftp.isi.edu/in-notes/rfc1738.txt>

 [UTF-8] F. Yergeau, 'UTF-8, a transformation format of ISO 10646',
 RFC 2279, January 1998.

 <url:ftp://ftp.isi.edu/in-notes/rfc2279.txt>

 [UTF-16] F. Yergeau, 'UTF-16, an encoding of ISO 10646', RFC 2781,
 February 2000.

 <url:ftp://ftp.isi.edu/in-notes/rfc2781.txt>

 [ZLIB] P. Deutsch, Aladdin Enterprises & J-L. Gailly, 'ZLIB
 Compressed Data Format Specification version 3.3', RFC 1950,
 May 1996.

 <url:ftp://ftp.isi.edu/in-notes/rfc1950.txt>

9. Author's Address

 Written by

 Martin Nilsson
 Rydsvägen 246 C. 30
 SE-584 34 Linköping
 Sweden

 Email: nilsson@id3.org

http://www.id3.org/id3v2.4.0-structure.txt (17 of 17)4/12/2006 10:58:55 PM

	id3.org
	http://www.id3.org/id3v2.4.0-structure.txt

