
.NET CLR Framework

Unmanaged Hosts - Assembly Access

8/08/2017ptrex

.NET CLR Framework
WHAT : is .NET Common Language Runtime (CLR) Framework

• The Common Language Runtime (CLR) is a an Execution Environment. Common Language Runtime (CLR)'s
main tasks are to convert the .NET Managed Code to native code, manage running code like a Virtual
Machine, and also controls the interaction with the Operating System.

• As part of Microsoft's .NET Framework, the Common Language Runtime (CLR) is managing the execution
of programs written in any of several supported languages. Allowing them to share common object-
oriented classes written in any of the languages.

ptrex 8/08/2017

.NET CLR Framework
WHAT : is .NET Common Language Runtime (CLR) Framework

• The Common Language Runtime (CLR) has the following key components in .NET
• Automatic Memory Management
• Garbage Collection
• Code Access Security
• Code Verification
• JIT Compilation of .NET code

For more details see here : http://www.csharpstar.com/top-20-dotnet-framework-interview-questions/

ptrex 8/08/2017

.NET CLR Framework
HOW : To access the CLR environment.

You need to create an Appdomain Object in your unmanaged environment,

An Appdomain provides an isolated region in which code runs inside of an existing process.

• Application domains provide an isolation boundary for security, reliability, and versioning, and for
unloading assemblies. Application domains are typically created by runtime hosts, which are responsible
for bootstrapping the common language runtime before an application is run.

• In AutoIT you can call the _CLR_GetDefaultDomain() function which is located in the CLR UDF

ptrex 8/08/2017

.NET CLR Framework
WHAT : is a .NET Appdomain

• AppDomain is designed to be called by unmanaged code, and it allows a host to inject an assembly in the
current process.

Managed code developers generally shouldn’t call the an AppDomain. AppDomain’s Load method returns a
reference to an assembly.

• Assembly’s Load method is the preferred way of loading an assembly into an AppDomain. But Assembly Load method can
have performance drawback though.

TIP : By the way, the LoadFrom method allows you to pass a URL as the argument. Here is an example.

Assembly a = Assembly.LoadFrom(@"http://Wintellect.com/SomeAssembly.dll");

• Metadata is stored in a bunch of tables. When you build an assembly or a module, the compiler that
you’re using creates a type definition table, a field definition table, a method definition table, and so on...

• The System.Reflection namespace contains several types that allow you to write code that reflects over
(or parses) these metadata tables.

In effect, the types in this namespace offer an object model over the metadata contained in an assembly
or a module. Keep in mind that you can create Multiple Appdomains in 1 Host Process !

ptrex 8/08/2017

.NET CLR Framework

WHAT: is Reflection in .NET CLR

• CLR Reflection :

• Many of the services available in .NET and exposed via C# (such as late binding, serialization,
remoting, attributes, etc.) depend on the presence of Metadatas.

• Manipulating existing types via their metadata termed ”Reflection” and is done using a rich set of
types in the System.Reflection namespace.

• Creating new types is termed Reflection.Emit, and is done via the types in
the System.Reflectio.Emit namespace.

• The classes in the Reflection namespace, along with the System.Type and System.TypedReference
classes, provide support for examining and interacting with the metadata.

ptrex 8/08/2017

.NET CLR Framework

WHAT: is Late Binding in .NET CLR

• CLR Late Binding :

• Reflection can also perform late binding, in which the application dynamically loads, instantiates and
uses a type at runtime.
=> This provides greater flexibility at the expense of invocation overhead.

• The Activator class contains four methods, all static, which you can use to create
objects locally or remotely, or to obtain references to existing objects.

• The four methods are CreateComInstanceFrom, CreateInstanceFrom, GetObject,
and CreateInstance:

1. CreateComInstanceFrom : Used to create instances of COM objects.
2. CreateInstanceFrom : Used to create a reference to an object from a particular assembly and
type name.
3. GetObject : Used when marshaling objects.
4. CreateInstance : Used to create local or remote instances of an object.

ptrex 8/08/2017

.NET CLR Framework

WHAT: is Late Binding in .NET CLR

• CLR Late Binding

• The Activator class :

Example in PowerShell

• The four methods are CreateComInstanceFrom, CreateInstanceFrom, GetObject,
and CreateInstance:

See PowerShell Code Intellisense

ptrex 8/08/2017

.NET CLR Framework

HOW: to Constructing an Instance of a Type Using Reflection

• CLR Late Binding

• The Activator class :
1. CreateComInstanceFrom : Used to create instances of COM objects.

This is the same as CreateInstanceFrom , except for CreateComInstanceFrom method
will check if the type is an COM visible type first.

Example in AutoIT :

ptrex 8/08/2017

.NET CLR Framework
HOW: to Constructing an Instance of a Type Using Reflection

• CLR Late Binding

• The Activator class :

2. CreateInstanceFrom : Used to create a reference to an object from a particular assembly and
type name.

The Activator class also offers a set of static CreateInstanceFrom methods.
These methods behave just as the CreateInstance method, except that you must always specify the
type and its assembly via string parameters.

The assembly is loaded into the calling AppDomain by using Assembly’s LoadFrom method (instead
of Load).

Because none of these methods takes a Type parameter, all of the CreateInstanceFrom methods
return a reference to an ObjectHandle, which must be unwrapped.

Example : see 1. CreateComInstanceFrom

ptrex 8/08/2017

.NET CLR Framework
HOW: to Constructing an Instance of a Type Using Reflection

• CLR Late Binding

• The Activator class :

3. GetObject : Used when marshaling objects.

4. CreateInstance : Used to create local or remote instances of an object.
When you call this method, you can pass either a reference to a Type object or a String that
identifies the type of object you want to create. The versions that take a type are simpler. You get to
pass a set of arguments for the type’s constructor, and the method returns a reference to the new
object.
The versions of this method in which you specify the desired type by using a string are a bit
more complex.

An ObjectHandle is a type that allows an object created in one AppDomain to be passed
around to other AppDomains without forcing the object to materialize. When you’re ready
to materialize the object, you call ObjectHandle’s Unwrap method. This method loads the
assembly that defines the type being materialized in the AppDomain where Unwrap is called.

Example : see below…

ptrex 8/08/2017

.NET CLR Framework

HOW: to Constructing an Instance of a Type Using Reflection

• CLR Late Binding

• The Activator class :

4. CreateInstance : Used to create local or remote instances of an object.

Example in AutoIT

ptrex 8/08/2017

.NET CLR Framework

HOW: to Constructing an Instance of a Type Using Reflection

• CLR System.AppDomain Class

System.AppDomain’s methods :

The AppDomain type offers four instance methods (each with several overloads) that construct an instance
of a type: CreateInstance, CreateInstanceAndUnwrap, CreateInstanceFrom, and
CreateInstanceFromAndUnwrap.

These methods work just as Activator’s methods except that these methods are instance methods,
allowing you to specify which AppDomain the object should be constructed in.
The methods that end with Unwrap exist for convenience so that you don’t have to make an additional
method call.

ptrex 8/08/2017

.NET CLR Framework

HOW: to access Assemblies using CLR Runtime Hosts

• Different Types of .NET Objects exist : COM Visible or NON COM Visible Objects !

So Depending if on this you need to use different CLR Functions to access the Type Members…
You can use one of the many Free Assembly Viewers, to check if a Method is COM Visible or NOT.
Like for Example ILSpy

In AutoIT you need to use these functions :
• For COM Visible : _CLR_CreateObject()
• For NON COM Visible : _CLR_LoadLibrary()

ptrex 8/08/2017

.NET CLR Framework

HOW: to access .NET Assemblies using CLR Runtime Hosts

• There are big Difference between the Conventional COM and .NET CLR Components

One of them is that the .NET cannot be accessed the same way as the conventional COM Objects

The ways COM and .NET locate components are quite different. Conventional COM components can be
physically located anywhere, but the information about how to find and load them is kept in one central
location: the Registry.

In contrast, CLR components do not use the registry at all. All managed assemblies bring this information
stored within them, as metadata. In addition, .NET components can live either privately with their
applications in the same directory, or globally shared in the Global Assembly Cache (GAC).

To instantiate a COM component with CoCreateInstance, COM looks in the registry for the CLSID key, and
the values associated with it.

These values tell COM the name and the location of the DLL or EXE that implements the COM co-class
that you wish to load. One of the much-touted benefits of COM is location transparency.

ptrex 8/08/2017

.NET CLR Framework

HOW: to access .NET Assemblies using CLR Runtime Hosts

• There are big Difference between the Conventional COM and .NET CLR Components

Simply stated, the COM client calls the object in the same way, whether the object is in-process with the
client, out-of-process on the same local machine, or running on a different machine altogether; the
registry tells COM where.

This system is easy to break. If files change location without changing their registry setting, programs
break completely. This contributes to the infamous problem known as "DLL Hell."

For that reason, and many others, .NET components take a completely different approach.

The CLR looks in one of three places: the GAC, the local directory, or some other place specified by a
configuration file.

ptrex 8/08/2017

.NET CLR Framework

HOW: would you use CLR Runtime Hosts in AutoIT

• COM Visible Objects

In AutoIT you need to use : _CLR_CreateObject() function for accessing COM Visible Members

As You can see the COM VISIBLE Methods / Properties are accessible using the DOT notation.

ptrex 8/08/2017

.NET CLR Framework

HOW: would you use CLR Runtime Hosts in AutoIT

• COM Visible Objects

For COM Visible Objects you can easily use PARAMETERS in the _CLR_CreateObject() Function.

ptrex 8/08/2017

.NET CLR Framework

HOW: would you use CLR Runtime Hosts in AutoIT

• NON COM Visible Objects

In AutoIT you need to use : _CLR_LoadLibrary() function for accessing NON COM Visible Members

It is important to set the correct BindingFlags in order to find the Members you need.

ptrex 8/08/2017

.NET CLR Framework

HOW: would you use CLR Runtime Hosts in AutoIT

• BindingFlags Options in .NET

Specifies flags that control binding, and the way in which the Search for Members and Types is
conducted by Reflection.

See System.Reflection BindingFlag Options

More info see : https://msdn.microsoft.com/en-us/library/system.reflection.bindingflags(v=vs.110).aspx

ptrex 8/08/2017

.NET CLR Framework
HOW: would you use CLR Runtime Hosts in AutoIT

• BindingFlags Options in .NET

A Property is considered Public to Reflection if it has at least one Accessor that is Public. Otherwise the
Property is considered Private, and you must use BindingFlags.NonPublic | BindingFlags.Instance |
BindingFlags.Static (Combine the values using Or) to get it.

Example : Array Class GetMedian Private Type

You can recognize it immediately being Greyed Out in ILSpy …

A Private Type is unaccessible by default, but you can get access to it using the correct BindingFlag
combinations.

ptrex 8/08/2017

.NET CLR Framework

HOW: would you use CLR Runtime Hosts in AutoIT

• BindingFlags Options in AutoIT

Specifies flags that control binding, and the way in which the Search for Members and Types is
conducted by Reflection.

See CLR.au3 UDF for all BindingFlag Options

ptrex 8/08/2017

.NET CLR Framework

HOW: would you use CLR Runtime Hosts in AutoIT

• BindingFlags

• BindingFlags Example :

Without the correct BindingFlags you will not get any RESULT !!

Can be a HexValue = 0x158 or the Variable Name $BindingFlags_GetProperty as Function Parameter

More info here : https://msdn.microsoft.com/en-us/library/kyaxdd3x.aspx

ptrex 8/08/2017

.NET CLR Framework

HOW: would you use CLR Runtime Hosts in AutoIT

• Using SafeArrays

In AutoIT you always have to use SafeArrays in the CLR Functions to pass as a parameter.
Standard AutoIT Arrays will not work !

See SAFEARRAY.au3 UDF for all Options

ptrex 8/08/2017

.NET CLR Framework

HOW: would you Debug CLR Runtime Hosts in AutoIT

• DEBUGGING

Interpreting HRESULTS

In AutoIT you occasionally might run into mysterious HRESULTs returned from .NET that begins with
0x8013

Interpreting HRESULTS returned from .NET/CLR: 0x8013XXXX COM Error,

see here :
https://blogs.msdn.microsoft.com/yizhang/2010/12/17/interpreting-hresults-returned-from-netclr-
0x8013xxxx/

ptrex 8/08/2017

.NET CLR Framework

WHEN : would you use CLR Runtime Hosts

• WHEN : Would you use CLR Runtime Hosts :

1. To access .NET Class Libraries

ptrex 8/08/2017

.NET CLR Framework

WHEN : would you use CLR Runtime Hosts

• WHEN : Would you use CLR Runtime Hosts :

2. Accessing custom build . NET Assemblies : AutoItx3.Assembly.dll

ptrex 8/08/2017

.NET CLR Framework

WHEN : would you use CLR Runtime Hosts

• WHEN : Would you use CLR Runtime Hosts :

3. To Compile . NET Code into an Assembly : Compile C# or VB.Net code into Assembly.dll

ptrex 8/08/2017

.NET CLR Framework

WHEN : would you use CLR Runtime Hosts

• WHEN : Would you use CLR Runtime Hosts :

4. To Run C# or VB.net Code : Compile Code C# at Runtime

ptrex 8/08/2017

.NET CLR Framework

WHEN : would you use CLR Runtime Hosts

• WHEN : Would you use CLR Runtime Hosts :

5. To create .Net GUI WPF Applications

ptrex 8/08/2017

.NET CLR Framework

WHEN : would you use CLR Runtime Hosts

• WHEN : Would you use CLR Runtime Hosts :

6. To Mix AU3 WinAPI’s and .Net in your Application

ptrex 8/08/2017

.NET CLR Framework

HOW: would you access PowerShell using CLR Runtime Hosts in AutoIT

• POWERSHELL Automation :

In AutoIT you can now access PowerShell Modules, Cmdlet, Scripts and more …
By Accessing the “System.Management.Automation.PowerShell” Class

ptrex 8/08/2017

.NET CLR Framework

HOW: would you use SQL CLR Runtime Hosts in AutoIT

• SQL Common Language Runtime

SQL Common Language Runtime, is technology for hosting of the Microsoft .NET common language
Runtime Engine within SQL Server , which is unexplored at the moment …

More info : http://www.sqlservercentral.com/articles/Stairway+Series/104406/

ptrex 8/08/2017

.NET CLR Framework

HOW: would you use SQL CLR Runtime Hosts in AutoIT

• .NET CORE

.NET Core has Portable Class Libraries and is Cross Platform, supported by Microsoft on Windows, Linux
and Mac OSX , which we have not explored at the moment …

In theory we could access .NET Core Libraries that are loaded on Linux / MAC and invoke commands … ?

More info : https://blogs.msdn.microsoft.com/dotnet/2015/02/03/coreclr-is-now-open-source/

ptrex 8/08/2017

.NET CLR Framework

HOW: being grateful…

• By Joining the CLR .NET development community and move this forward…

https://www.autoitscript.com/forum/topic/187334-using-net-libary-with-autoit-possible/

https://www.autoitscript.com/forum/topic/188158-net-common-language-runtime-clr-framework/

Many Thanks to :

Danyfirex / Larsj / Junkew / Trancexx

ptrex 8/08/2017

