Pﬂ cantrd exmands irge 5 Caenca)

taihesch Dot e — @O-om

ity

- e
<JasertPicsesalshange (spath, Srexgeeiange

= ATTTTUIUTRVERS

Jayme Fishman, Copyright 2015 all rights reserved

’

Urcon'cepts

Sarpie 73b W 12 temg |

Savzle Combe

Sample Goyp
- Rado Gne
- Q& Tivo

Tt

© Bem2 @ty cpgey
F1ee 4, e
e

. S5, ’

1|Page

Foreword

When | released the first version of Autolt in 1999 | did not think that it
would attract a global following. Today the Autolt forum has over
60,000 members who have generated over a million posts for coders of
all levels. JFish, one of our forum members, recently created this book
“Learn To Program with FREE Tools Using Autolt”. It provides an
excellent introduction to programming and Autolt. | would recommend
it to anyone who wants to understand the basics along with plenty of
examples.

- Jon, Autolt creator

2|Page
Jayme Fishman, Copyright 2015 all rights reserved

Contents

0] o= (U TSP 7
Section |: About me and the intended aUAIENCEcocuiiriiiiiiii e 7
NY=Totd o] g R I T Y o] o T e - 1 o [P URTRRN 7
Section 3: Why this programming [aNGUAZETccuiiiiiiiiieiiciiie et ecree e see e s sere e e ssrreeesseaeeeeas 7

(0 0T o) (< ol RV o 1Yo B DT | - OSSR 8

(O F T oY (T R - T =1 o L PRSPPIt 10

Chapter 3: “Hello. Operator. HOW may | @SSist YOUP”oiiiiiiiie ittt eeree e et e e e evte e e e eve e e e s snraeeeeanes 11

Chapter 4: Let’s Program Something Shall WE?ooi ittt sere e sveee e s e e 14
Chapter 4: Section 1: INStalling AULOIteviiiiiiie e e e s ee e e sabeeas 14
Chapter 4 Section 2: QU firSt Program:coii it ee e e e e s re e e s sabee e s e snbeeeeesabeeas 24
Chapter 4 Section 3: Using our first program to incorporate concepts from prior chapters................ 31

Chapter 5: Conditional STatEMENTS.ccccuiiie et e et e e e e tre e e e ebte e e e seataeeesstaeeesstasaesanes 33

Chapter 6: Do That Again. Understanding LOOPS......cciccciiieieiiieeicciieee et e s ectte e e et e e e eveee e e sneaeeesntaeeeeanes 39

Chapter 7: CUSTOM FUNCHIONS.....ciiiiiiii ittt e ettt e e s st ee e e s s bteeeesabeeeessbtaeessseneessnseeessnes 49
Chapter 7 Section 2: Variable SCOPEui ittt e e s sbee e s e abee e s e nabeeas 52

(O o FT oY (T o H N 1YL PSRRIt 54

Chapter 9: Graphical User INterfaces (GUIS)ecicuiiei ittt ettt e et e e e eeate e e e eatae e e earaeeeeanes 57

GUI / CONEIOI LAYOUL 1eeeeveeieeieeeiee et ettt ettt ettt e vt e e tee e e te e e eteeeeaaeeebeeeeaseesabeeebeeesabeeeseeeesseeenseeennnes 58
(G0 =T 1 1T o PP P TP 58
THE BUELEON ettt st s sttt e bt e s bt e s he e sae e st e ean e e bt e b e e r e e s e e enneenreen 62
BT LT o1V = o PPNt 65
POSItIONING GUI CONTIOIS ..cccneiiiei ettt eette e e tee e e e etae e e e et e e e e eeabeeaeennbaeeeesaseeeeenasenas 66
Listening fOr CONTIOl MESSAZES ..cuvvieeieiieeeceiiee ettt e e e ette e e ee e e e e st e e e e e btee e e ebeeeeesnbaeeeesabeeeeennsenas 69
GUICEITREAM .ttt ettt h e s a ettt e e bt e s bt e sat e sab e e bt e be e bt e saeeemeeenteebeenbeesaeesanenas 69
Y1000 o] (S 10 L 01 o] o | SRS 70
GUICEIICrEateComMDO .. .ceeieee ettt st ettt e et e beesreesane e 72
Chapter 10: Introducing KODA — Drag and Drop Graphical User Interface Toolccccccuveeevciveeiiciieennnns 78
0] =] o 0 TNt 79

R =] o Nt 79

) =] o 5 F Nt 80

Chapter 11: What’s in @ name? String Mmanagement.ccovciiiiiiiiiie e eeieee et eree e e svee e e e ssvea e e e enes 93

3|Page

Jayme Fishman, Copyright 2015 all rights reserved

) Y= [) RS 93

) 1 g1 T={ =Y o E T PP PP PPUPPPPPPTIN 94
Y A g aY =4 2T] - [o PSP 95
Y A 1aY =AY o] PP 96
) A oY= I o1 = PSP 98
SEENGTIIMRIGNT .. e e et e e e st e e e s s bba e e s sabeeesensbeeesenabeeesennsenas 100
Stringleft and SEHNGRIGNTco i e e 101
Chapter 12: Files and Dir@CLOMIES ...uuiiiiiciiie it eecitee et e e st e e et e e e s sabaeeessataeeessstaeeessssaeeesasseeeessnsseeesnn 102
LS ettt bbbt sttt et e bt e h e e he e st e bt e b e e beeebe e she e et e e bt e nbeesneesaneeas 102
File creation — FileOpen / FIleWTFite / FIlE@CIOSEveeeveieeieeetee ettt ettt ettt e e tae e v 102
FIEVVTIE ..ttt et et h e s b e s at e st e et e b e e b e e e bt e s beesaeeeae e e st e e beenbeesaeesanenas 104
FILEBREAM. ..ttt ettt ettt e st e e s bt e sttt e bt e e s bt e e subeesabeesbbeesabeeesnbeesabeesbbeesabeeenns 106
11T 0o o V2SR 107
1Y@ o 1T 0] DIF:] Lo - IT 108
D =Tot {0 g 1= PO TP OPPUTUPTRN 109
D O =T = OO TP OPPUTUPTRTN 110
D g €] Y 4 =P PP PPURUPRPRN 110
DIFIVES ittt et a e s r e s ba e e sbe et 112
DFIVEGEEIDIIVE. ...ciiiiiiiticctc bbb a e sbe e 112
(0 0T oY =T ol e TR 1V, =Tl o 1SRRI 113
AULOIE-TEIAtEA MACIOS ... ittt ettt e bt e s bt sat e et e et e e be e sbeesaeesabesabesbeenbeens 113
L= g (o] ST O PRSPPSO PPN 113
B[4 =Toi o] 4N 1 - [0 o 1-J PP PP PSP TOPPPPPOPPRE 113
N A L= 0 T] (oI 4 = ol e 1P 115
TIME aNd DATE MACTOS .. eeeiieiiieieeeieeee ettt sttt et e s b st st st e bt e b e s b e e sme e et e eneenneesreesane e 116
Chapter 14: User define@d fUNCLIONSccuiii ittt e e e e e et e e e e tre e e e breeeeennaeeaean 117
FAN - 1 1§ 1. N 117
BV =Y 11 o] - 1Y SR 118

B N0 2 1 Y=Y [ol o TSRSt 118
X -1V 0 N 119

e E A Yo T = LT o o 1T o RSP 120
B 11 T e Y AN = 2SR 120
4|Page

Jayme Fishman, Copyright 2015 all rights reserved

B 51 1= 2 o T o PR PPPRR 121

GUI UDFS e s e aeseaeaeaaaaaasasasaaasasasanasasanananenns 121
ST ettt et b e h et b ettt e et e Rt e bt e bt e sh e e e at e sab e e bt e b e e beeebeeeaeeeneeentean 122
e =T a Yo T oV A o1 = o - [PPSRt 123

[N oF | o =Y = | o T 1] < PPNt 124
Chapter 15: Automating other applicationsoccvviiiiciiiiicc e 125
WiNAOWS IMaN@BEIMENT.....uiiiiiiiiee ittt ettt e et e e et e e e st e e e ssabee e e esabeeesssabeeesessbeeesessseeesennseeeesnnseens 126
WWINACVITATE .ttt e e s e e st e s r e e e s nr e e e s e n b e e e s enreeeseanreeeeennrenes 127

R 1T =T o SRR 128
WWINCIOSE <.ttt ettt et e b e s b e s a e s et et e e bt e bt e s bt e she e e at e et e e sbeesbeesaeesanesabeeabeebeenns 128
WINWRITACTIVATE ..ot e s s 128
SENA <ttt ettt et e et e e bt e e b et e e bt e e bt e e h et e e beeesabee s bee e bbe e s bee e nbeeeateesabeeesabeenn 129
L2 TN 130
UToTo ol T g Y= oleY oY o] -3 131
AUBINTO ettt sttt e b e b e h e e a bt ettt e e b e e e bt e she e et e et e e beesheenaneeas 132
CONTIOISEETEXL -ttt ettt ettt et s bt s ae e e ab e et e e bt e s bt e saeesaeesabe e be e bt e abeesmeesmeeeaeeentean 136
CONLrOICOMMEANG.....iiiiiiiiieeete ettt e st e s bt e s bt e s bbe e sabeesbbeesabeesbeeesabeesabaesnnteesabeeanns 137
(60e] g1 001 NY=1 o T ISPV PPTOPPTRPRPRT 138
MOUSE MaNAGEMEBNT.....ciiiiiiiiiiiiiiiiiiitiiieetetee ettt ettt te et reteeeteteteteteaeteteteteaeteteteteaeteeeeeeeeseseserssesesesesenes 139
IMIOUSEGETPOS ...ttt s e s e e s e e e s semee e e s sene e e e s sannee e s snee 140
IMIOUSEIVIOVE ...ttt e st e st e e s et e e s eb et e e s sme e e e s samaeeessamaeeessannneesnanes 140
T Ao T BT o] o] Tor=1u Lo T s LU 1 0 oL TS 140
EXCEIUDF ...ttt et et e s e st st st e bt e b e s r e e s bt e s e e e e e et e e r e e sneesreesene e 140

B =T Cel=] I oY= o [P PPPROt 141
EXCEI_BOOKNEW.ceiiiiiiie ittt ettt e sttt e e e et e e e et e e e e ebt e e e e sbaaeeesabaeeeesstaeeesstaeeessnteeassnnes 142
EXCEI RANGEWWIITE ...eeieiieiiie ettt ettt ettt e e et e e e e bt e e e e e bteeeeebtaeaeebteaeeestaeaesassasaesassasessassanansnnes 145
EXCEI BOOKSAVEAS......cieieeiettieeee e ettt e e e e e e e e e e e e e e et e e e e e e e s saaababeeeeeeeeeeaanabtaaeeaaeeeannnrraeaaens 147

B (el I = oo (@ o T=T o ISR 148
_EXCEI_RANGEREAM ...ttt et e et e e e et e e e et e e e e s rta e e e eeataeeeeataeaeanes 149
YOUE FUNCEIONS ...t sttt et e s b st e et et e s b e e saeesanesanesne e reenne 150
Chapter 16 Compiling: Making your programs into executablesccccveeeiiiieieiiieee e 152
LT 0 0= o To o PO T PP RTPPPTOPPRRRNt 152
5|Page

Jayme Fishman, Copyright 2015 all rights reserved

THIrd MEthOU: ...ttt e bt e et e s b e e sab e e sbeeesneeesaneeesnres 153
Chapter 17 AULOIT FOrUM RUIES ...ccueiieeeceieee ettt ettt e et e e e ettt e e e eata e e e sataeeeensaeeesnseeeesansaneaean 154
Chapter 18 Links To Source Code Examples Used IN This TeXL......cccvuvireiiiieeeeiiieee et e e e eevee e 154
Source now included in the Appendix to this text. It may also be downloaded as a companion file on
the Autolt forum doWnload PAGE.cc.oeeeiiriiieiieeee ettt sttt st e 154
(@ 0T o) =T ol Ko I @0 o Tol [V 1] o Yo R 154
F Yo7 o 1=] o Lo | PRSP 155

6|Page

Jayme Fishman, Copyright 2015 all rights reserved

Prologue

Section I: About me and the intended audience
| was always very competent when it came to using computers but | never wrote (or understood) a
single line of code. | was very interested in learning - but how?

| followed the usual path of going to the bookstore and sifting through all the “Teach yourself
programming” books. It was dizzying. There were so many, covering so many different languages, that |
did not know where to start. | eventually settled on “Programming for Dummies” —an uninspired
rudimentary manual that raised more questions for me than it answered. Months and years of
occasionally picking up books and putting them down resulted in even more frustration. Then | enrolled
in a beginner’s class for Java programming at the Harvard Extension School. It turns out that all |
needed was the basics fed to me in a digestible way to start me on the path of being able to write my
first program.

If you are like | was — someone who has the desire and has poked around a lot with various sources of
information but never really made the connection to the material that allows you to succeed — then this
book is for you.

Section 2: The approach

This book takes the approach of teaching you about all programming languages by introducing you to
Autolt — a free automation and scripting language for Windows. The tools and programs that we will
use can only run on the Windows platform. If you have a Mac all is not lost - you can run Windows on a
virtual environment through a program like Parallels and install these tools on your virtualized Windows
environment.

Some books take the approach of starting with a single application and adding to it. | find that this can
be very confusing. If you don’t understand any piece of the application your confusion may interfere
with subsequent lessons. We will start off by studying core concepts and will demonstrate them in
actual programs that you can build and run.

'
NOTE: Be patient. | know the urge is to just skip all of the foundational pages and get to a program
to see it work but you won’t do yourself any favors if you don’t understand how it works. Believe me; |
have done the same thing.

Section 3: Why this programming language?

We are using Autolt because it a very powerful free tool. The other reasons are that Autolt has an
incredibly well documented help file and user forum. You can use the help file to figure out how to do
just about anything (this book tracks very closely to the help file). If you ever get stuck, you can visit the
Autolt online forum and ask a question. As long as you follow the forum rules and are courteous you
will almost always get a super-fast response that guides you in the right direction. Autolt is also very
powerful. You can create full featured applications very quickly. As a testament to that there is a

7|Page
Jayme Fishman, Copyright 2015 all rights reserved

section in the forum that contains example applications and it is filled with many stunning entries that
you can download, use, and even change (assuming the author provides permission to do so) to suit
your own needs. And did | mention it was FREE? Don’t worry if you have never heard of it before and
want to program a specific language like C#, Java, PHP, etc. This book will provide you with the ability to
switch languages very quickly. That is because all languages have a similar foundation of core concepts.

Chapter 1: Types of Data

Programs are basically sets of instructions for computers. To make a program that does what we want
it to do we need to understand some of the basic types of data that are used. Every programming
language has this concept.

@

NOTE: You will often see it referred to as “data types” or “datatypes.” The transformation of the
layman’s description “types of data” to the more technical term of art “datatypes” is fairly benign
because they are almost identical. That won’t always be the case as we explore other technical
vocabulary words that we will need to understand throughout the materials but | will always try to make
sure the root meaning is well understood so that you don’t have to keep flipping back pages to figure
out a definition introduced in a prior section.

To better understand different types of data consider for a moment that source code, the code that we
write as programmers when building our applications, has to be human readable (else how could we
work on it?). Assuch, we are primarily dealing with letters and numbers — the components of our
everyday language. We also expect to see output from a program in human readable form. For
example, if | want to write a calculator application | will need to create a program that understands how
to display numbers and perform mathematical operations on them and then display the results.

Just like in the real world, within programming there are many different types of numbers. There are
whole numbers, those that have a decimal point, negative numbers, positive numbers etc. Likewise,
when we think of letters we know that we could have a single letter, a grouping of letters that forms a
word or a sentence, etc. Programming languages account for these nuances by referring to the
different options as types. For example, a whole number without any decimal places after it is referred
to as an integer. That vocabulary word is not terribly important at the moment other than to note that
there are other names for other types of numbers.

So what’s in a name? What difference does it make what | call a number that | want to use? Consider
the calculator example for just a moment. | am writing a program for a calculator and | decide to use
only integers (or whole numbers). Would that work? What would happen if | divided the number 1 by
the number 2? The answer is .5 and that is not a whole number. Therefore, strictly using the datatype
integer that only allows for whole numbers in my calculator could lead to problems. It could produce
the wrong result or crash the entire application.

8|Page
Jayme Fishman, Copyright 2015 all rights reserved

NOTE: When something unforeseen and unintended occurs in your program we call that a bug.
Bugs are inevitable — especially when you are just starting out. Being careful and planning can help you
reduce the number of bugs and get a solid program up and running in no time.

Some programming languages are syntactically stricter than others. That means that within the
program you are writing you have to be extremely careful with your punctuation and the way you refer
to all of your data or it may not run correctly. Many languages will make you “declare” your datatype
before you start using it. In other words, if you wanted to use an integer you may have to signal to the
program that is your intention. One of the nice things about Autolt is that it is a “looser” language. It
does not require strict declarations that can trip up new programmers. Just be aware that if you
transition to another programming language you may need to account for those types of differences.

In Autolt there is only one datatype called a Variant. A variant can contain numeric or text data and
decides how to use the data depending on the situation in which it is being used.! In other words, as we
write Autolt applications what we are doing will automatically determine the internal datatype. Since
there is only one official datatype “variant” Autolt does all the work for you and uses internal datatypes,
i.e. those commonly used in the other languages behind the scenes (such as “ integer”). That means
that we are not required to declare them explicitly in our programs. Autolt will take care of that for us.
Another internal numerical datatype that is very common is called a “double.” Autolt’s help file defines
a double as “A precision floating point number.” Said another way, this is a number that can use
decimal places. Using doubles may be a better choice for the arithmetic operations of our hypothetical
calculator application.

We also need to understand letters. Most programming languages refer to text as a “string” (an easy
way to remember this is a “string of letters”). You can create a string in Autolt simply by enclosing your
text in quotation marks (single or double quotes). The following are all strings: “Hello World”, “Dog”,
and “Cat”. How about “100”? Is that a string or a number? The answer is string. If instead we were to
simply type 100 without the quotation marks it would be treated as a numerical value. Once you wrap a
number in quotes the program thinks of it as text.

'S
NOTE: It is beyond the scope of this section but you can “cast” one data type to another. So if you
have a number in a string “100” you could explicitly tell the program to treat it as a number by “casting”
it to that datatype. However, it will default to text unless you do so.

A “Boolean” is another internal datatype that is very useful. It is a logical value that can be either True
or False. It cannot be anything else. You can use Booleans in your applications to test certain logical
conditions. We will talk more about that later.

' From the Autolt help file “Language Reference — Datatypes”

9|Page
Jayme Fishman, Copyright 2015 all rights reserved

o

&

&2 REMINDER: We need data to write programs. Different types of data are referred to as
datatypes. Autolt, our programming language of choice, has only one datatype called “variant.” The
language automatically knows which datatype to apply internally based on the context of its usage.
Integers and doubles are internal numerical datatypes used for whole numbers and precision numbers
respectively. A string is an internal datatype used to refer to text. A Boolean is an internal datatype
that can only be true or false.

Chapter 2: Variables

Your program will almost certainly need to temporarily store some information for one reason or
another. The place this information is stored is called a variable.

Variables have whatever names you give them. That is why it is important to give them a name that is
meaningful. Think of it this way, you will be writing programs that could have hundreds or even
thousands of lines of code. They may contain many variables. If you give them names like “variablel”,
“variable2” and so forth you will start to forget what you are using them for as you get further into your
application. Compare that approach to more descriptive storage names like “first name” and “age”. lItis
hard to forget what you are storing in those variables because their names describe the information.
You can store all sorts of information in a variable. You can store numbers like: 10, 2.14, -128.223. text
such as “the quick brown fox jumped over the log”, and much more.

This is all starting to sound very technical so let’s use the very first line of code that appears in this text
to visualize the concept of variables. To understand what we are about to look at you need one more
piece of information. In Autolt each variable name (remember we can call them anything) must start
with a dollar sign “S”. Here is our first variable: Smessage.

We can point our variable to information by using an equal sign. The information that follows is
“assigned” to the variable.

Smessage = “your first variable”

The above code is creating a variable called “Smessage” and using it to store some text. We could have
used any name we wanted but since we are storing a message “Smessage” is descriptive. The equal sign
that follows the Smessage variable is used to assign the text “your first variable” (which is also referred
to as a “string”) to Smessage. Therefore, we have assigned the string “your first variable” to the variable
“Smessage.”

There are a few more things about variables that we will explore in subsequent chapters. The above
explanation should be enough to get us started.

10| Page
Jayme Fishman, Copyright 2015 all rights reserved

.'\ara REMINDER: variables are places to store information. We can use any name we want for a
variable but should strive to make those names descriptive. In Autolt the name of our variables are
always preceded by a dollar sign “S”. Although variables can be used to store various datatypes such as,
numbers, text, or Booleans (true / false) Autolt only has one datatype: variant, and it figures out which
internal datatype to apply for us automatically.

Chapter 3: “Hello. Operator. How may |
assist you?”

We already know all about datatypes that describe numbers and letters along with variables where we
store information. Now we may want to take our data and compare it or perform arithmetic on it (i.e.
do something with it). These types of actions are facilitated by operators. You already know many of
the operators even if you don’t realize it. You learned them in grade school. The operators for addition,
subtraction, division, and multiplication are as follows: +,-,/,*.

Let’s combines some concepts here to see operators in action. In this example we will create two
variables SfirstNumber and SsecondNumber to which we will assign values 3 and 5 respectively:

SfirstNumber = 3, SsecondNumber=5

Now those variables are storing our information and we can use them to make a little program. To
illustrate this | will create a third variable called Sanswer. We will use it in our program to store the
results by assigning the sum of the first two variables to it. We will use the operator “+” to add the first
two variables together.

Sanswer = $firstNumber + SsecondNumber

If we printed out the contents of the Sanswer variable after we ran this simple program we would see
the numeric value of 8. This example allowed us to use datatypes, variables, and operators to produce
the sum of two variables. Adding 3 + 5 is not an example of a particularly powerful program. You may
never want to write that since you already know the answer but consider the use of bigger numbers.
Autolt even supports scientific notation. What if simply changed the values of SfirstNumber and
SsecondNumber to the following values expressed using scientific notation 1.826395e7 and 23.34e3 and
multiplied them rather than add them together? If you can do that in your head kudos! For those who
can’t the answer is: 426280593000. | only know that because | ran the program to get the answer. The
point is that we can get our programs to easily perform tasks that we would find difficult or impossible —
and they can do it at incredible speeds.

11| Page
Jayme Fishman, Copyright 2015 all rights reserved

We won’t cover every operator available in the Autolt language. You can see the complete list at any
time in the Autolt help file that you will receive when we install the software (or you can view the online
version on their website).2 For now, let’s cover a few of the more prominent ones:

> |Tests if the first value is greater than the second.

>= |Tests if the first value is greater than or equal to the second.
< |Tests if the first value is less than the second.

<= |Tests if the first value is less than or equal to the second.

= |Tests if two values are equal.

<> |Tests if two values are not equal.

& |Joins two strings.

Many of these operators also probably look familiar to you from your experience outside the
programming world. The syntax you may have used in the past may be slightly different but hopefully
the concepts look familiar.

| will demonstrate how they are used within a program. Let’s imagine that you are writing a program
that will decide whether or not somebody is eligible to vote. We know the voting age is 18. Our
program could ask the user to enter their age. We know that if a user’s age is less than 18 or, using an
operator <18, the program could determine they are not eligible. We also know that if the user’s age is
>18 they are eligible to vote. The other two scenarios may be slightly less obvious. Let’s start with
greater than or equal to >=18. That means that if the user is equal to 18 or older than 18 they are
eligible to vote. That operator would suit us just fine as it seems to cover all the scenarios to determine
if the user can vote (i.e. 18+). Using only > instead of >= would not allow us to correctly determine that
somebody who is exactly 18 is eligible because it would only identify someone older than 18. Likewise,
using <=18 to determine who is not eligible would lead to the false conclusion that someone whose age
is equal to 18 is not eligible.

We may also want to compare values to test whether or not they are equal to each other. For this we
would use = and <> respectively. To demonstrate this let’s use a different example of a program that
randomly selects from three different greetings: Sgreeting 1, Sgreeting 2, and $greeting 3. How might
we tell the program what do to if it selects Sgreeting 2? One possibility is that we would use the =
operator to say that if the random selection = Sgreeting 2 say “hello from greeting 2”. You can also
imagine how we might use not equal, <>, for similar tests and instructions within our program. For
example, let’s say it was important to your program to determine if the randomly selected greeting is
anything other than Sgreeting 2. To do that you would instruct the program to test if random selection
<> Sgreeting 2. If that test is true then it must be something other than Sgreeting 2.

? http://www.autoitscript.com/site/

12| Page
Jayme Fishman, Copyright 2015 all rights reserved

Let’s cover one last operator used to join two strings together. We know from our discussion on
dataypes that a string is information appearing between quotation marks that the program treats as
text. We already assigned a string to a variable when we wrote: Smessage="your first variable”. Now
what if we wanted to add to that message? What if we wanted the entire message to say “your first
variable. Wow! Look we are programming!”. One approach could be to re-assign that entire message
to the Smessage variable as follows: Smessage = “your first variable. Wow! Look we are

17

programming!”. However, thanks to our friend the ampersand operator, &, we don’t have to do that.
The code below demonstrates the use of the ampersand operator to concatenate (i.e. combine / join)
two strings together. The code also uses semicolons to add comments that are ignored by the computer

when it runs (see the note below the code explaining comments in more detail):

Smessage="your first variable” ; this is a comment explaining that we already wrote this earlier

|”

SadditionalMessage = “ Wow! Look we are programming!” ; note the extra space before Wow.

ScombinedMessage = Smessage & SadditionalMessage ; will produce “your first variable. Wow! Look

17

we are programming

Let’s discuss what we just did above. We simply joined two strings, or text, together with the “&”
operator. The result is that the messages are combined into a single block of text. It is worth
mentioning that they are also still separate in the first two variables we used of Smessage and
SadditionalMessage. They are only joined in the ScombinedMessage variable. Therefore, the
comments below reflect what we would see if we where to print all three:

Smessage ; “your first variable”
SadditionalMessage ; “ Wow! Look we are programming!”

ScombinedMessage ; “your first variable. Wow! Look we are programming!”

#
NOTE: Every language has a way to add notes to that program that are ignored when the program
runs. We call these comments and they are useful to programmers to document what they have done
as well as teach others reviewing their code. In Autolt we use the “;” to comment on a line of code.
Everything that follows the semicolon on that line will be ignored by the program when it runs. Think of

it as a way to add your own sticky notes within the application.

& REMINDER: operators help us perform operations with our data. Many of them are intuitive
because we have seen them before outside of programming. Some examples of common operators
include greater than “>”, greater than or equal to ”>=", less than “<”, and less than or equal to “<=".
We can also test to see whether or not things are equal with the = and <> operators. The ampersand
operator “&” can join strings together. Finally, a complete list of Autolt operators can be found in the

help file.

13| Page
Jayme Fishman, Copyright 2015 all rights reserved

Chapter 4: Let’s Program Something Shall
We?

®
NOTE: This chapter is broken into two sections: Installing Autolt Development Tools and Our First
Program. If you already have Autolt installed you can skip the first section of this chapter.

The first three chapters provided us with an introduction to datatypes, variables, and operators. Those
concepts help define the various types of data we will be working with, how to store them, and how to
perform operations on them respectively. There are many additional nuances on all three subjects that
we did not cover because some of it will be covered in subsequent chapters and some of it is beyond the
scope of this text. The information we already covered is enough to get started writing our first
program. However, we will need to download and install some tools used to write the programs and
test them. The following instructions demonstrate a step by step installation process to get you started:

Chapter 4: Section 1: Installing Autolt
Before we can install Autolt we have to download it from the official website at:
http://www.autoitscript.com. Once on their site you will see a section for downloads. If they re-design

their site it could move but as of the printing of this book you can find it here.

l4|Page
Jayme Fishman, Copyright 2015 all rights reserved

http://www.autoitscript.com/

©) AutoltScript - AutoltScript Website - Mozilla Firefox

File Edit View History Bookmarks Tools Help

i@aﬂ\utoltScnpt AutoltScript Website +

(- J v autoitscript.com/site/ (& 8 ~ Google P 4 #

(8] Most visited |

Getting Started |3 Latest Headlines | | scrapwithgretch.com -... Scrapbooking RSS

U II PUICIENN Autolt Editor » Autolt Tools» Code Forum Wiki Blog Contact
¥ Overview

cimagex [

GRAPHICAL INTERFACE FOR | 9 Online

e Documentation

GlmageX is a graphical user interface fq SR
Windows Assessment and Deployment Kit (Windows ADK). ImageX is

used to capture and apply WIM images for Windows deployments.

GImageX uses the supported Microsoft WIMGAPI API for working

with WIM files. GImageX is a native application for the x86 and x64

platforms (Windows XP and above) that will also work in Windows PE

(WInPE). There is also a COM component version included that

implements some of...

Castre | sy | i | Ovange | Moure | Oeese | Bxpert | At

& & T L
= Una rerim s
3 empeEEAe
www, autoitscript.com/site/autoit/downloads/ = = v

€ Firefox automatically sends some data to Mozilla so that we can improve your experience. Choose What I Share | x

Once you click into the download section you will be presented with several options. | recommend
selecting the “Autolt Full Installation” package because it will add all the necessary components to your
system with one easy installation.

15| Page
Jayme Fishman, Copyright 2015 all rights reserved

Software

Download

Autolt Full Installation. Includes x86 and x64 components, and:
® Autolt program files, documentation and examples.

® Aut2Exe - Script to executable converter. Convert your scripts into
standalone .exe files!

® AutoltX - DLL/COM control. Add Autolt features to your favorite
programming and scripting languages!

® Editor - A cut down version of the SciTE script editor package to get started.
Download the package below for the full version!

Download 4
Autolt

Autolt Script Editor.(Customised version of SciTE with lots of additional coding
tools for Autolt)

Download
Editor

Autolt- Self Extracting Archive (for those who don't like/want an installer)(includes
x86 and x64 components and Aut2Exe and AutoltX)

Download . ‘
ze [

When you download, click the file to open it and you may see a warning that you are opening an
executable (exe). Click “OK”:

Open Executable File?

<

launch "autoit-w3-setup.exe"?

[] Don't ask me this again

L ok [Cancel]

"aukait-v3-setup, exe” is an executable file, Execukable files may contain viruses or ather malicious
code that could harm your computer, Use caution when opening this file, Are you sure wou want ko

i3

After that you will be presented with a window asking you if you want to run the application. Click

MRun”.

Jayme

Fishman, Copyright 2015 all rights reserved

16 |Page

Open File - Security Warning

Do you want to run this file?

Mame: auboit-v3-setup, exe
Publizher: Autolt Consulting Ltd

Type: Application

From: Z:\Documents and Settings! Javmeify Documentsh, ..

ﬁ Run][Cancel]

Alhwayz ask before opening this file

patentially harm pour camputer. Only run saftware from publizhers

@ 'hile filez from the [ntemet can be useful, this file type can
wou sk, What's the nizk?

Next you will be in the installer that will walk you through the options to install the Autolt application.
Click “Next”. NOTE: the version numbers change with each release. They have been replaced with
black boxes to avoid confusion between the version number in effect at the time this text was written
and the latest version that you may download and install.

& Autolt v Satup

computer,

Click Mext to continue.

Will reflect
current version

é{ Mext >] [Cancel]

Then you will be presented with the license agreement. Click “I Agree”:

17| Page
Jayme Fishman, Copyright 2015 all rights reserved

& Autolt v, Setup

Licenze Agreement
f Plzase review the license kerms befare installing Aukalk '-.f-

Press Page Down ko see the resk of the agreement,

| Attt ~

Author ¢ Jonathan Bennett and the Autolk Team
WY bbb e aubaitscripk, comg autoik 3y
E il + support@autoibscript, com

EMD-USER LICEMSE AGREEMENT FOR THIS SOFTWARE

This End-User License Agreement ("ELA™ is a legal agreement
between yaou {_either_ an indix_fidual ar a s_ingle gntity} and _I:he "

If wou accept the kerms of the agreement, click. I Agree bo continue, You musk accepk the
agreement ko inskall Autolt vﬁ

[< Back ” I Agree l [Cancel

Autolt saves files that you create with a *.au3 file extension. Those files are the source code for your
programs. You can run them as a program and/or edit them. The next screen asks what you would like
the default behavior to be when you click on an *.au3 file. It will either run by default or open up in an
editor for you to edit. If you pick run you can still edit the file by opening it in the editor. If you pick edit
you can still run the file. This is only your personal preference for what happens when you click the file.
Autolt is a “scripting” language so programs are often referred to as scripts.® The installer is defaulted to
“Run the script” whereas my personal preference is to “Edit the script”. Pick the option that suits you
best and click “Next”.

EQE
oy

w2 REMINDER: Autolt saves files that you create with a *.au3 file extension. Those files are the
source code for your programs. You can run them as a program and/or edit them.

3 Scripting languages are known for the automation of tasks which could alternatively be executed one-by-one by a
human operator. http://en.wikipedia.org/wiki/Scripting_language.

18| Page
Jayme Fishman, Copyright 2015 all rights reserved

& Autolt v, Setup

) Run the script

(%) Edit the script

Defaults for = .au3

What da you want ko da when yvou dauble-click a *.au3 file?

Select a defaulk option For *, au3 files,

< Back ” Mext = l [Cancel

You will then see a screen prompting you to select the components for install. Make sure all the boxes

are checked and then click “Next”.

& Autolt v Setup

install, Click Mext ko conkinue,

Select the type of install:

Or, select the optional
components you wish to
install:

Space required: 21.0MB6

Choose Components

Choose which Features of Autolt «|Jou want to instal,

| |

Check the components wou wank to install and uncheck the components wou don't want to

2 : [Description
Autalt Core Files (require i
Script Examples
IIDF Scripk Exarmples
55 | 8
< Back ” Mext = l [Cancel

Jayme Fishman, Copyright 2015 all rights reserved

19| Page

Next you need to select the location to install the Autolt application. You can use the default location
that appears in the window or change it using browse. | recommend using the default. Click “Install”
when done.

@ Autolt v Setup

EoX

Choose Install Location
Choose the Folder in which ko install Aukalk v-

Setup will install Autolt Il o the following Folder. To installin a different Folder, click
Browse and select another Folder, Click Install ba skart the installakion,

Destination Folder

”_:\Program Files!aukalkd | Browse, .,

Space required: 21.0M6
Space available: 128.6GE

< Back

[Install l [Cancel

20| Page
Jayme Fishman, Copyright 2015 all rights reserved

The application will then start to install:

& Autolt v Setup

Installing
Flease wait while Autolt I is being installed,

Extract: _Date_Time_TzSpecificLocalTimeToSystemTime, aul

(RRNNARNRRNAARRRNANR

Extract: _Date_Time_SetFileTime, au3 s
Extract: _Date_Time_SetlLocalTime. aus]
Extrack: _Dake_Tirme_ SetSystemTime, aul

Extract: _Date_Time_Set3ystemTimesdjustment, au3
Extract: _Date_Time_SetTimeZoneInformation, aus

Extrack: _Dake_Time_SwstemTimeTobrray . aul

Extrack: _Dabe_Tirme_SwystemTimeToDateSkr, aul

Extract: _Date_Time_3SwstemTimeTaDateTimestr, aus
Extract: _Date_Time_SvstemTimeToFileTime, aus

Extrack: _Dake_Time_SwstemTimeTaTimeStkr au3

Extract: _Date_Time_SwstemTimeTaT2SpecificLocalTime, aul
Extract: _Date_Time_TzSpecificLocal TimeToSystemn Time, aus

When it is done installing you will see a confirmation screen with a “Finish” button. Note that the
default checkbox with the green arrow will show the release notes when done. Release notes can be
important because they reflect all the changes to the Autolt language that could potentially interfere
with your applications if you write something and then upgrade Autolt. However, for now, since this is
your first program you can uncheck that box and click “Finish”.

21| Page
Jayme Fishman, Copyright 2015 all rights reserved

& Autolt v Setup E]

Completing the Autolt vl
Setup Wizard

autolt v has been installed on your computer,

Click Finish to close this wizard.

[V]5how release notes (check For script breaking changes):

Yisit the Autolt website For the latest news and support.

= E_'j‘j ! Elnlsh Cancel

If you check your installed programs you should now see Autolt listed. Open the directory where you
installed and you should see the following:

22| Page
Jayme Fishman, Copyright 2015 all rights reserved

= Autolt3

¢ Address (IC3) C:\Program FilestAutolts

™ =E3

L Go #

File Edit Miew Favorikes Tools Help

File and Folder Tasks

o=
i AutZExe
ﬁ Make a new Folder

e Publish this Folder to the |"'_‘,:
Wieh LJ Examples

i Share this Folder

Other Places

Details

Autolt3
File Folder

Date Modified: Todaw,
Mavember 26, 2013, 7132 &M

Au3Check. exe
Au3Check

Au3lnfo_x6d.exe
Au3Info
AukoIk Team

Aukalbs. exe
Aukolk w3 Scripk
Aukalk Team

Autolt3Help, exe
Autolt3Help viewer
Aukolk Team

Autolt, chm
Compiled HTML Help file
£5 KB

Uninstall exe
Aukolk w3 Setup
Aukalk Team

Tylo {modified by Jos {1deB))

o=
Lj Autolty
—
D Extras
_\‘:
rf'lij Include

Au3Check, dat
Yiden C0 Movie
13KB

Au3Info.exe
AuzInfo
Aukolk Team

AukoIt3.chm

1,393 KB

Aukalk Team

1EKE

DFs3.chm

| @ D I

Aukalts_x6d.exe
Aukolk w3 Scripk

[

Compiled HTML Help file

Aukolk 3 Website
Internet Shortouk

Campiled HTML Help File
= 2,580 KB

<

Two very important files are: Autolt3.chm (note: use the one with the ‘3’) and inside the SciTE directory
(folder) there is a file called SciTE.exe. These files appear as follows:

Help file AutoIts, chm
— Compiled HTIL Help File
= 1,395 KB

SciTE (we will use this to edit scripts) SCTE.exe

SeiTE - a Scintilla based Text E. ..
Meil Hodgson neilhi@scintilla, org

Jayme Fishman, Copyright 2015 all rights reserved

23| Page

o

&

&2 REMINDER: The Autolt help file is a very valuable resource. It is very detailed, contains tutorials,
examples, and is searchable. Reading the help file will assist you in gaining a better understanding of
the language and programming in general. SciTE is the tool we will use to create, edit, and run our
programs. It has a built in syntax highlighter for Autolt that will help make our code more readable.

'
NOTE: It is also worth noting that Autolt has a Wiki. The wiki is located here:
https://www.autoitscript.com/wiki and contains a lot of valuable information beyond that in the help

file. It is yet another resource at your disposal to search for answers to common questions.

Chapter 4 Section 2: Our first program:

If you had any difficulty with any part of the install process you can go to the Autolt website and post a
guestion about installing to the forum (please search the forum for answers first before starting a new
thread) and/or read the help file and FAQs. If all went according to plan you have everything you need
to create your very first program (also known as a script).

SciTE is a programming editor, a tool that allows us to write programs, that comes pre-loaded with
Autolt keywords and functionality. It has the ability to highlight certain key words and areas of your
code to make them easier to read, auto-complete commands, and more.

Find the SciTE.exe application that was installed in the SciTE directory where you installed Autolt. It
should look like the above picture and double click it to open the editor.

You should see something like this when SciTE opens:

(@

DEEHD & $BEX « o Qo

1

24 |Page
Jayme Fishman, Copyright 2015 all rights reserved

https://www.autoitscript.com/wiki

Note that SciTE is very similar to a word processor. You can see many icons that you are probably
already familiar with for saving, printing, copying, pasting, etc. However, as a program editor (also
referred to as a “script editor” or an IDE “Integrated Development Environment”) it can also help you
create, edit, and run your scripts (remember we will sometimes refer to our programs as scripts and vice
versa).

The perennial favorite first program for all languages is “Hello World” where we write a simple program
that displays the “Hello World” message back to us. | don’t want to rob you of the experience of seeing
those magic (and somewhat anti-climactic) words on your computer screen so | won’t break from
tradition — that will be our first program. From prior chapters we know that we are going to need to
create a string because the information we want to display is a message surrounded by quotation marks.
This signals to our program that we are dealing with text. Autolt can figure out that the internal
datatype is a string because of the syntax (use of quotation marks). However, we have not discussed
how we are going to make the computer display the string back to us. To do that, we will use a function.

Every programming language has built in functions that perform useful tasks. They are pre-built
collections of commands created for programmers in an effort to reduce the amount of coding you have
to do (you can also create your own). We will cover many of the functions in the help file in subsequent
chapters. For now, we only need to understand that there is a pre-built function that can create a
message box that pops up on the screen and prompts us to close it with an “OK” button. The image
below reflects the section of the Autolt help file that speaks to the creation of a message box. We will
study the command in detail and then use it in our first program.

25| Page
Jayme Fishman, Copyright 2015 all rights reserved

Function Reference

MsgBox

Displays a simple message box with optional timeout.

MsgBox { flag, "title™, "text"™ [, timeout [, hwnd]] }

Parameters

fla The flag indicates the type of message box and the possible button combinations. See
d remarks.

title The title of the message box

text The text of the message box

timeout [optional] Timeout in seconds, After the timeout has elapsed the message box will be

automatically closed. The default is 0, which is no timeout.
hwnd [optional] The window handle to use as the parent for this dialog.

MsgBox function screenshot above from Autolt help file

In order for the message box to display the appropriate title and message we have to feed certain
information to it. These slots where we put this information are often referred to as parameters and
the data we supply are called the arguments. The help file screenshot for the MsgBox function shows
the command required to create the message box which is in yellow (i.e. typing “MsgBox” followed by
parenthesis that will contain the parameters which are separated by commas). Directly below the
command we see an explanation of the parameters. They are flag, title, text, timeout, and hwnd
respectively. All of these parameters are responsible for different facets of the message box. For
example, “flag” allows us to manipulate the appearance and behaviors of the message box we are
creating. There is additional information on the message box function in the help file that you can
review to understand all the options and what you would need to supply as a value for that parameter
to create your desired behavior/appearance. The parameters title and text will set the title of the
message box and the text contained within it respectively.

A quick review of the parameters shows that some appear within quotation marks while others do not
(i.e. title and text are in quotes). That is because the function expects us to input strings (text within
guotation marks) for those parameters. Said another way, the arguments we supply should be strings

26| Page
Jayme Fishman, Copyright 2015 all rights reserved

for those two parameters. Conversely, the parameter flag is not in quotes. That parameter is expecting
a numeric value. If we putin quotes the program will think it is text and get confused.

We can also observe the last two parameters of timeout and hwnd are preceded by open brackets. That
means they are optional (as you can see in the comments from the help file that explain them). We
could optionally supply a timeout parameter so that the message box closes automatically after so many
seconds or we could leave it out entirely and it will use the default behavior that requires a user to click
“OK” to close it. That is different from the first three parameters. Those don’t have brackets.
Therefore, they are mandatory. We must supply all three arguments (one for each parameter of flag,
title, and text) or the program will not run. Instead, it will produce an error telling us that we did not
supply the required parameters to the function. However, we may be able to supply blank arguments —
which still satisfy the requirement of supplying the mandatory items. Passing an empty string (i.e.

awn

double quotation marks with nothing in them: “”) as an argument will count. An example of this would
be if we wanted to create a message box with a title at the top. Then we could use double quotation
marks (“”) for the title parameter. The hwnd optional parameter is a bit advanced for the purpose of
this discussion. Handles are basically ways to refer to resources that we want to interact with. We will

cover that more in subsequent chapters.

Now let’s use this function and supply some parameters to create our own message box. Follow these
steps, which we will review after we run the program:

®
NOTE: This book comes with a companion set of files containing the code examples. Code
examples that appear in the file are organized by chapter. They are also called to your attention in this
text with the following tag:

Code

In this case, the example below will be found in the Chapter 4 directory and labeled as Example 1

Code

Chapter 4 Example 1
First, type the following into SciTE:

File Edit Search View Tools Options Language Buffers Help

1 #include <MsgBoxConstents.aud>
2 MsgBox (¢MB O, "My first program™, "Hello World™): this is a comment - good Job
3

Next, save the file with the name “hello world.au3.” You can save it anywhere but | recommend
creating a folder that will hold all of your programs.

27| Page
Jayme Fishman, Copyright 2015 all rights reserved

“e C:\Documents and Set]

it Search Wiew Too

=]
Open...
Cpen Selected Filename
Revert

Close
Save

Save File

Save in; |E}helln world R@ V| Q ¥ -

ty Fecent
Documents

This can be any location you want

My Documents

by Computer

Filz name: |hellu:| vworld h w |
by Metwark. Save as type: |ﬂutnlt [au3] % W |

@ﬁf

Save
Caricel

Now go back to SciTE and select “Tools” from the top menu, then “Go” (this is how we run the script):

File Edit Search View

D= E B é Compile

i, MagBox (™" Build

tions Language Buffers Help
CLrl+F7
F7

You should see the following:

Jayme Fishman, Copyright 2015 all rights reserved

28| Page

My first program E|

Hella Wharld

Click “OK” and the box will disappear. Congrats! You just wrote your first program and ran it. This was
a simple one-line program but there is a lot of useful information if we dissect it a bit. The following
diagram breaks the program into five numbered pieces so we can easily refer to them:

File Edit Search View Tools Options Language Buffers Help

DEEHDR & $mEaX| v o|qQq
1 #include <MsgBoxConstents.an3s
2 MagBox (sMB_OK, "My first program”, "Hello World™) : th - good Jjob

#1) Here we are using a keyword that we have not previously covered called “#include”. This simply

references another named script to bring in or “include” within your script. It is handy for including
functions created by others, making your code easier to read by breaking it into sections with separate
scripts, etc. See #3 below for an explanation of what we are including.

#2) We know from the help file that the term “MsgBox” is a pre-built function that created the message
box we observed when we ran the program. For now, we need to understand that in order for the
message box to display the appropriate title and message we have to feed certain information to it.
These slots where we put this information are often referred to as parameters and the data we supply
are called the arguments. Our arguments appear within the parenthesis and are separated by commas.

#3) The flag parameter: The message box is customizable with different options. The first parameter of
“flag” is a mandatory parameter. We must supply an argument for it in order for the message box to
appear. The help file tells us that we could use this parameter to change the appearance and behavior
of the box when we supply an argument. There are many different flags available and referenced in the
help file. A partial screen shot of the help file is shown here:

29| Page
Jayme Fishman, Copyright 2015 all rights reserved

Numeric flag that you

Constant names could use instead of The types of different buttons you will
coming from the the constant. see based upon the flag you use.
included file. l
\‘| Decimal ‘
Constant Mame flag Button-related result
- MB_OK 0 0K butt
Within the .J"$ = —
MsgBoxCo $MB_OKCANCEL 1 OK and Cancel
%‘fetirr]‘it:-aw $ME_ABORTRETRVIGNORE 2 Abort, Retry, and Ignore
would be: $MB_YESMOCANCEL 3 ‘Yes, Mo, and Cancel
$MB_OK=0 $ME_YESNO 4 ¥es and No
——— _

MEB_RETRYCAMNCEL 5 Retry and Cancel

The MsBoxConstants.au3 file contains a set of variables that do not change. They are referred to as
“constants”. The constants in the file give human readable names to the numeric flags used to
customize the message box with various options. For example, a flag with the value of zero (i.e. 0) will
create message box with an “OK” button. The file we included contains a constant of “SMB_OK” and
assigns 0 to it as follow SMB_OK= 0. Now, instead of using a number that does not make much sense to
us when we read our code (i.e. how are you supposed to know 0="0K”?) we can use SMB_OK which
clearly conveys that we are creating a message box (MB) that has an okay button (OK).

#
NOTE: The use of #include <MsgBoxConstants.au3> is optional. It merely gives you access to the
human readable constants. If instead, you simply wanted to use 0 to show a message box with an OK
button you could do the following:

MagBox (0, "some title™, "some text™
That will produce the same result as:

#include «<MsgBoxConstants.au3dr

MagBox (sMB O, "some title™, "some teXt”™

#4) The title parameter: The second parameter for the message box controls the title to the window
that pops up. You will note that when you ran the program the window had a title of “My first program”
that appeared in the blue title bar at the top of the popup window. If you were to leave this blank the
popup would not have a title. Alternatively, you could change this to anything within the quotation

marks and create a new and/or different title.

30|Page
Jayme Fishman, Copyright 2015 all rights reserved

mk:@MSITStore:C:/Program%20Files%20(x86)/AutoIt3/AutoIt.chm::/html/keywords/include.htm

#5) The text parameter: The third parameter that we supplied dictates the message that will appear
within the body of the message box window. We supplied “Hello World” and that is what we saw when
we ran the program.

#6) The human-readable comment that does not impact the program: This was not required. | added it
so that we could study how to make notes in our program using comments that have no impact on the
actual script / program we are running.

It is also worth mentioning that we did not supply any arguments for the optional parameters of timeout
and hwnd. This is different than when we passed a blank argument to the optional parameter of flag. In
this case we did not supply any arguments — blank or otherwise. The program is fine with this because
they were optional.

=W

REMINDER: Autoit comes with pre-built functions that can help reduce the amount of coding
required to get your program up and running. Many of these functions have parameters that impact the
outcome of the function when it is used. We can pass in data, known as arguments, to produce the
desired result when using functions. MsgBox is one such function. It has three mandatory parameters
that must be used to make the function operate correctly as well as two optional parameters that do
not have to be used. When the MsgBox function is run within an application the default behavior is that
it will pop up a small window (i.e. message box) displaying a message that requires the user to click “OK”

to close.

#

NOTE: Functions can also be created without any parameters. The arguments in this case are
“void”. An example would be somefunction(). In this case there are parenthesis that don’t contain
anything. The function would be called simply by referencing it: somefunction(). No additional
information is required.

@

NOTE: Though this was not discussed the message box will actually stop the rest of your script from
executing until it is either closed manually or with the timeout parameter. Therefore, be careful when
using it so you don’t stop an application from running through completion when a user is not there to
close the box. One way to avoid that is by having it close itself with the timeout parameter.

Chapter 4 Section 3: Using our first program to incorporate concepts from

prior chapters
Your confidence is no doubt swelling after you wrote you first program and ran it to completion. Now
let’s build on the first effort to incorporate variables and operators from chapters 2 and 3 respectively.

We already know what happens when we run the following line of code:

31|Page
Jayme Fishman, Copyright 2015 all rights reserved

File Edit Search View Tools Options Language Buffers Help

D= Hf‘lé\%\@XInijm

1 #include <MsgBoxConstants.au3>
2 MsgBox ($MB _OK, "My first program”, "Hello World™); this is a comment - good job
3

Now what if we were to create two variables: SfirstMessage and SsecondMessage and store the
following information as follows?

File Edit Search “iew Tools Options Language Buf

el & ol C

1 hello world, auz | 2 hello world with variables,au3

1 sEirztMezzage "Hellao ™
2 gzecondMessage ”Tﬂl:urld'1

How might we now combine those two strings to form our complete message and display it in a
message box? If you guessed with an operator, specifically the ampersand that is used to join strings,
you are correct! Here is what the modified program might look like with variables and operators:

Code

File Edit 5earch View Tools Options Language Buffers Help

DR & | Q a?

1 Examplel.au3| 2 Bamplel.au3

Chapter 4 Example 2

1 #include <MsgBoxConstants.aud>

2 tfirstMessage "Hello ™

3 fsecondMessage "World”

4 Msgbox (SMB_OK, "My second progream”, $firstMessage $sec::1d_‘{essagej:|

Try entering that text and saving it as a separate file called “helloworld2.au3”. If you run that program
you will get the identical message to the first program: “Hello World”. Note: the title of the window
changed because we changed the second argument to “My second program”. So why is it important to
know this other approach that takes more coding to produce the same result? Remember that we can
store anything in our variables. One possibility is that our program may have logic that changes the
information of one of our messages so that when the message box appears it says something
completely different (this would require additional code). The storage location is called a “variable”
which suggests that it can change. We will cover examples of how this occurs later on when we tackle
conditions that impact the flow of our programs.

32|Page
Jayme Fishman, Copyright 2015 all rights reserved

EQE
'-@, REMINDER: We can use variables instead of typing out the data that we intend to use later on in
our programs. We can have variables that store strings (text) and join them with the ampersand

operator.

Chapter 5: Conditional Statements

Conditional statements can be used to change the flow of your program. You can test to see if a
condition exists and then depending on the answer follow a certain path. Let’s think back to our voting
example. We have already decided that if a person is greater than or equal to >= 18 then they can vote.
We covered the operator >= but did not discuss how to apply the test with code. The answer is in the
sentence we used to describe the test. “If a person is >=18 then they can vote”. “If ... Then ... Else” is
one of the conditional statements available in Autolt. So how does it work? Let’s take a look at the
following example:

Code

Chapter 5 Example 1

File Edit Search View Tools Options Language Buffers Help

DEEDR & | | Q at
1 #include <MsgBoxConstants.and>
2 Sage 17
3 % if sage>=18 Then
4 Magbox (5MB OK, "Voting Answer™, "The person can vote™
a5 Else
[T Magbox (sMB OK, "Voting Answer™, "The person cannot wote™
7 EndI{]

If you want to type out this code and save it as vote.au3 you can. Then you can run it. When you do you
will see that if Sage=17 you will get the second message box stating they cannot vote. When you run
the program above you should see the following output:

* X

The person cannok woke

As you can see, the program selected the appropriate response based on the person’s age. However, if
you set the age to 18 or higher you will get the first message box stating they can vote. Try it out. Now
let’s cover why the program behaved that way. The “If... Then ... Else” statement allowed to create a
conditional statement that tested for whether or not our age variable was greater than or equal to 18.

33| Page
Jayme Fishman, Copyright 2015 all rights reserved

The statement allowed for two different paths that would trigger two different messages depending on
the answer

File Edit Search VYiew Tools Options Language Buffers Help

LEE R & | Qat

include <MsgBoxConstants.and

fage 17 .
if $age>=18 Then

MagBox (2MB_OK, "Voting Answer™, "The person can vote™
B Else
MagBox (2MB_OK, "Voting Answer™, "The person cannot wvote"
EndI{]

N

1.) On this line we have created a variable called Sage that we are using to store the user’s age
which we have set to 17.

2.) On this line we have created the start of our If ... Then ... Else conditional statement to evaluate
whether or not Sage is >= 18.

3.) Thislineis a catchall test. It is saying “for everything else, do this”. In our case, everything else
means that age is <18 since if it were >=18 it would have triggered the first test.

4.) We have to close our If ... Then ... Else statements by telling the program it is the end of our test
with Endlf.

Using the above program we can ensure the person is eligible to vote based on their age. What if
we also wanted to test to make sure that they were a U.S. citizen? In other words, our requirement
is that they are at least 18 years of age AND a U.S. citizen. We could express that in code using our
old friend the operator. We did not cover the “AND” operator earlier but it is a logical test that we
can use to ensure multiple conditions are satisfied. In this case we can test to see if Sage>=18 AND
Snationality="US”. The code would be altered as follows:

34|Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 5 Example 2

File Edit Search View Tools Options Language Buffers Help

D@ EGI& EREY:
1 Exampled.au3 2 Examplel.au3

1 #include <MsgBoxConstants.and>

2 fage 18

3 ftnationality "Canadian™

4

5 % if fage 18 and fnationality "IS" then

[MsgBox (sMB OK, "Voting Answer”™, "The person can vote™

7 Else

g T MsgBox (sMB OK, "Voting Answer”™, "The person cannot vote™
g

EndIf

If you run this example you will see that the person is not eligible to vote based on their nationality
even though they are 18 years of age. Now try changing the nationality from “Canadian” to “US”
and you will the output showing that they can vote.

Another way to test for multiple conditions using is a conditional statement is by “nesting” them.
That means you can place one conditional statement inside another. Let’s consider our voting
example. What if we changed the logic to look like this?

Code

Chapter 5 Example 3

File Edit Search View Tools Optiocns Language Buffers Help

DB S | | Q
1 #include <MsgBoxConstants.aud>
2 Sage 18
3 tnationality "Canadian™
4
S if fnationality "IU5S" then
& if $age>=18 then
7 MagBox (sMB 0K, "Voting Answer™,"The person can vote"
& Else
g MagBox ($MB_OK, "Voting Answer","The person cannot wvote"
10 EndIf
11 Elze
12 [ﬁ MagBox (sMB_OK, "™, "Sorry. You are not & U5 citizen."™
13 EndI{]

This produces a similar outcome but it gets to the answer in a different way. Note that there are
actually two independent tests. The first is testing for nationality. If the person is not a U.S. citizen
it will skip over the age test and output the last message: “Sorry. You are not a US citizen”.
However, if you change the citizenship to “US” then and only then will it check the age requirement.

35|Page
Jayme Fishman, Copyright 2015 all rights reserved

When it checks for the person’s age it will use the second If ... Then ... Else statement that is
“nested” within the US citizenship test.

®
NOTE: in the nested example there are two complete sets of statements starting with If .. Then
and the closing with EndIf. If you nest statements you will need to close the nested statement(s)
and the outer statements in which they are nested. Also, you can continue nesting multiple times so
that you have several more nested conditions. Alternatively, you may want to use the Select ... Case
or Switch ... Case conditional statements. They are detailed within the Autolt help file.

s
NOTE: Certain words are considered “keywords” because they are reserved by the Autolt
programming language. They are used to perform various tasks. “If, Then, Else, EndIF” are all
examples. There is a complete keyword reference in the help file.

With that understanding of the If... Then... Else in hand it’s time to “Switch” things up a bit. That’s a
bit of programming humor for you because Switch is a keyword also used for conditional
statements.

The Autolt help file shows the syntax and parameters for the switch:

36|Page
Jayme Fishman, Copyright 2015 all rights reserved

Switch...Case...EndSwitch

Conditionally run statements.

Switch <expressioni

Caze <value> [To <wvalue>] [,<value> [To <values>] ...]
statem=ntl
[Case <value> [To <value>] [,<value> [To <wvalue>] ...]
statementl

-1

[Case Else

statementN

nool
EndSwitch

Parameters

An expression that returns a value. The value from the expression is then
<gxpression= | compared against the values of each case until a match is found. This expression is
always evaluated exactly once each time through the structure.

=value> To _ _ o
evalues The case is executed if the expression is between the two values.
<value> The case is executed if the expression matches the value.

The switch will test an expression to see if it matches any of the cases. If it does, it will run the code
contained in the statement. Here is a small example:

37|Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 5 Example 4

File Edit 5earch View Tools Options Language Buffers Help
DR & =@ X| o | qt

#include «<MsgBoxConstants.an3>
fexpression = 5

[] Switch fexpression

(= T TS, B SO Y S U %]
[1]

Caze 1
£3Mag = "The value i=s 1"
=] Case 2
£3Mag = "The value is 2"
=] Case 3
10 £sMag = "The wvalue is 3"
11 =] Case Else
12 £3Msg = "The value is something other than 1,2,or 3"
13 EndSwitch
14
15 ﬂsgBDx{$HB_DK, w" . &3Mag)

In this example we are testing the expression contained in our variable with the same name. The
script will set a message to different values for different cases. The cases we have setup can be
either 1, 2, 3 or ‘else’. That means we will see a different message if the value of Sexpression is 1, 2,
3, or something else. In this case, we have set the variable Sexpression to the number 5 so we
would see the following:

The value is sormething other than 1,2,0r 3

‘@z REMINDER: Conditional statements can be used to change the flow of your program. You can
test for certain conditions and have your program respond different ways depending on the
outcome. The If ... Then ... Else is a staple of conditional statements. It’s user friendly syntax allows
you to test to see “If” a condition is true and “Then” take the appropriate action “Else” do
something different. We can combine our use of operators with conditional statements to assist
with creating the condition we are testing. We can also If ... Then ... Else statements within each
other.

38| Page
Jayme Fishman, Copyright 2015 all rights reserved

Chapter 6: Do That Again. Understanding
Loops

As you start to write more programs you will invariably need to do something repeatedly. Consider
the conditional statements from the previous chapter. In that example we test to see if someone
was a U.S. citizen and at least 18 years of age to determine if they were eligible to vote. However,
we did it only for a single pair of values for Sage and Snationality that we coded into our program.
What if instead, we had a list of 1,000 values and we wanted to test them all? Writing out a
program 1,000 times wouldn’t be any faster than looking at the list row by row (in fact it would
likely be much slower). For this type of task we have loops. Loops are statements that repeat for a
certain number of times or until a specific condition is satisfied.

To properly demonstrate a loop | am going to introduce you to another pre-built Autolt function:
“ConsoleWrite”. ConsoleWrite will show information in the bottom of our SciTE window (the
console) when our application runs. It has only one parameter called “data” which is whatever you
want to send to the console. Therefore, the function looks like this: ConsoleWrite(“data”). Let’ start
of by sending a simple piece of text to the console and then we can introduce some loops.

Code

Chapter 6 Example 1

DEeEE & $ B@E X « o~ Qqgr

1 ;s Consolelrite example
2 ConsoleWrite"Hello World™
3

If you save this code snippet as “consolewrite.au3” you will see the following appear at the bottom
of the SciTE window:

39| Page
Jayme Fishman, Copyright 2015 all rights reserved

File Edit Search Wiew Tools Options Language Buffers Help

D & ts) O o
1 ;s Consolelrite example
2 Consolellrite ("Hello TWorld™
i |

ey Program Files\Autolt2d, SciTEVAutoIt3WrapperyiutoltiWrapper. exe™ Jrun A
+=07:20:18 Starting AutoltIWrapper v.2.1.3.0 SCiTE v.3.3.6.0 ; Eevhoard:
sPunning AUTICheck (1.54.22.0)0 from:C:\Program Files\hutolts

+=07:20:18 Al3Check ended.rc:0

sRunning: (3.3.8.11:Ci\Program FilestAutolIt3autolti.exe "Ci\Documents and

Hello World+ g
>Exit code: 0 Time: 1.18%8 b
L >

li=3 co=1 INS {CR+LF)

Note: The output has a bunch of information about how long it took to run your program, syntax
checks that were performed, etc. However, you can also see the output from our program next to
the arrow. It is somewhat hard to read because it is not on its own line. To rectify this we could add
a carriage return and make it easier to read by using a macro. Macros are predefined read-only
variables (so you can’t change their values) that offer easy access to various system resources.

Think of them as shortcuts. The macro shortcut for a hard carriage return is @CRLF. The first two
letters are for “carriage return” and the last two letters are for “line feed”. Together, they create a
“hard return” at the end of your text. Let’s modify our program to include the @CRLF macro and
see what happens to our output. Type the following into SciTE and save it somewhere:

Code

Chapter 6 Example 2

File Edit Search Wiew Tools ©Options Language Buffers Help

Dl & ﬂ Q o
1 ; Comaclelirite exdnple
z ConsoleWrite"Hello World™:z@CRELF
3 |

NOTE: we are adding the ampersand operator to join our text with the hard return. The script
would not run properly without the ampersand because “Hello World” is its own string (text within
guotations) and the @CRLF macro would be treated separately if we did not join them together.
The function expects only one argument for the single parameter. As such, the program would not
understand additional text without us signaling that the two should be combined into a single string
with the ampersand operator.

If you run the modified script your output should appear as follows:

40 |Page
Jayme Fishman, Copyright 2015 all rights reserved

File Edit Search Wiew Tools Options Language Buffers Help

ek & o Qo
1 ;s Consolelrite example
2 ConsoleWrite ("Hello World"zECELF
i |

ey Program Files\Autolt2d, SciTEVAutoIt3WrapperyiutoltiWrapper. exe™ Jrun A
+=07:28:40 Starting AutoltIWrapper v.2.1.3.0 SciTE v.3.3.6.0 ; Eevhoard:
sPunning AUTICheck (1.54.22.0)0 from:C:\Program Files\hutolts

+=07:28:40 Hlr3Check ended.rc;

>Punning: (3.3.8.11:C: ram Files‘Autolt3autolti.exe "C:\Documents and

Hello World
+=07:28:40 hutolIti.exe ended.rc:0 b
L >

li=3 co=1 INS {CR+LF)

You can see that the carriage return made our text appear on its own line with no text after it.

Now we will take the program one step further and use a loop to repeat the process. Let’s start
with the “for” loop. The Autolt help file explains the syntax (i.e. format) for how to formulate a
“for” loop:

For...To...Step...Next

Loop based on an expression.

For <wvariable> = <3tart> To <3top> [Step <3tepvalx]

statements
Hext
Parameters
variable The variable used for the count.
start The initial numeric value of the variable.
stop The final numeric value of the variable.

[optional] The numeric value {possibly fractional) that the count is increased by each

stepval :
P loop. Default is 1.

41 |Page
Jayme Fishman, Copyright 2015 all rights reserved

The loop will repeat everything after the “For To Step” line until it reaches the end count. After the
loop runs the designated number of times the script will continue to whatever follows “Next”. The
keyword “Next” is used to close the loop (just like EndIf in our conditional statements).

We covered the concept of keywords in the last chapter on conditional statements. “For, To, Step,
and Next” are all keywords. To create a For loop we use the keyword “For” to signal that we are
starting a loop. Then we assign a value to the start parameter to start our count for how many
times we want to perform the desired actions within the loop. Then specify a stopping point with
the stop parameter that follows the keyword “To”. We can optionally use a stepval parameter to
state whether or not we are counting by some number other than 1 which is the default (i.e. 2 to
count by twos, or -1 to count backwards). The value of our variable will increase (or decrease) by
the interval each time the loop runs. If we don’t specify anything our variable will increase by 1 each
time (that is the default as shown in the help file).

Let’s modify our code and test it out:

Code

Chapter 6 Example 3

File Edit Search Wiew Tools Opkions Language Buffers Help

; Conaclelirite exanple

for fa=0 to 9
ConsoleWrite ("Hello World :@CELF
nexﬂ

LI, T SR T RS

Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
Hello World
+=06:45:24 DutoTt3.exe ended.rc:0

=Tard + s~ n MHrms 1 MCT

li=5 co=5 INS {CR+LF)

Note, in the above example we started with a variable called $Sa and assigned it a value of zero. We
then told it to repeat the loop until Sa was equal to 9. The Sa variable automatically increases by 1
by default. That means each time the operation within the loop is performed the value of Sa

42 |Page
Jayme Fishman, Copyright 2015 all rights reserved

increases until it reaches the stop number (in this case 9). How many times did we print out “Hello
World”? The answer is 10 ... not 9. This is because we started at 0 and counted by ones until we got
to 9. That made the loop execute 10 times.

]

NOTE: Many programmers make the mistake of incorrectly counting the number of times their
scripts will run a loop because they forget that they used a zero base number from which to start
the count. You can avoid that by being careful or by assigning the value 1 to the variable in the
counter. For reasons we will cover later when we discuss arrays it is better to become familiar with
the zero number as the starting point.

We can see the value assigned to Sa increasing if we change our code a bit. This time, instead of
printing out the same message over and over again we can write a value that is different each time.
To do this we will write to the console a short text message (string) joined with an ampersand
operator to our variable Sa joined with another ampersand operator to a carriage return macro.
The output of the modified program appears in the console below the code. Now we have joined

the variable used in our loop to the data displayed in the console. By doing this we can see it
increasing each time the loop is run. We then joined the carriage return to the end of the data to
make sure each console message appeared on its own line.

Code

Chapter 6 Example 4

File Edit Search Wiew Tools ©Options Language Buffers Help
1 ;s Consolelrite example
2
3 for $a=0 to 9
4 TCDHSDlEU]‘:itE{"ThiS is a: " fa z{ACRLF)
5 next
This is a: d .
This is ar 1
This is a: 2
This is a: 3
This is a: 4
This is a: 5
This is a: 6
This is a: 7
This is a: &
This is a: 9
+=06:55:09 hutoTt3.exe ended.rc:0
»Exit code: 0 Time: 0.504 3
li=4 co=39 INS (CR+LF)

43 |Page
Jayme Fishman, Copyright 2015 all rights reserved

What would we do if we wanted to countdown from 9? To do that we could modify the code as
follows:

®
NOTE: In this modified example we are starting the value of Sa higher than the stop value and
using the optional interval parameter to instruct the script to subtract 1 from the value assigned to
Sa each time it runs the loop. Note the difference in the output.

File Edit Search Wiew Tools Options Language Buffers Help
1 ; Consolelrite exanpple
2
3 for $a=9 ta 0 step -1
4 TCDnsnlE[ﬂrite "Thiz iz a: " $a &[ACELF
5 next
Thisz is a: 92 -~
Thisz is a: &
Thisz is a: 7
Thisz is a: &
Thisz is a: &
Thiz is a: 4
Thisz is a: 3
Thisz is a: 2
Thisz is a: 1
Thisz is a: 0
+=07T:02:49 hutoIt3.exe ended.rc:0
=Exit code: 0 Time: 0.514 3
[i=3 co=2Z IMS (CR+LF)

Another really important tidbit about For loops is that just like IF ... Then ... Else conditional
statements they can be nested. That means you can put one or more loops inside your outermost
loop. This is very powerful but we warned — it can also quickly create confusion as you need to
remember what each loop does and how many times it does it. For that reason, | like to comment
the “For” line of each loop to remind myself what each loop is doing. Also, we want to make sure
we use different variable names for each variable in each separate loop. If the first one was $Sa we
may want to make the second one $b. Alternatively, we may want to use a more meaningful name
as is the best practice when dealing with variables in general. Let’s explore a simple example of a
nested For loop:

44 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 6 Example 5

||i=8 co=30 INS (CR4LF)

oopsmdned) |DSEDR & b B@X o g =
to make it 1 ; Comsolelirite example Will run outer |OOD twice
easier toread. 3
This loop will 3 loops = 1 /
run Everythmg 4 for §a=0 to 1
inittwice: once 5 > for sb = 0 to 9
for 0 and once] ConsoleWrite ("This is a: " & ¢b &@CRLF)
for 1. 7 XL
g ConsoleWrite ("Inner loop:"sfloopss ™ set finsished”:[ECELF)
- Floops+=1
10 next
This will occur i ¢ 2
10 times just like i — —
in our first script | This is a: 0 ~
but it will be run %%S is a ;
i is iz a:
tﬁﬁg‘ﬁ'%}'ﬁﬂgﬁ This is a1 3 When the inner loop
specified by the [l This is a: 4 completes it goes to
outerloop. In [l Tis is a: s whatever follows Next
this case twice. [l This is a: & before the outer loop kicks
This iz a: 7 inagain. Inthis case we
This iz a: & have a special message
This is a: @ telling us the inner logp is
Inner loop:l get finsishedeE. done.
This is a: 0
Thiz iz a: 1
This is a: 2
This is a: 3
Thiz is a: 4
This is a: &
Thiz iz a: &
This is a: 7 B
This is a: §
Thiz iz a: 9
Inner loop:Z set finsished b

In this example several things are happening: We have introduced a new variable called Sloops to
which we assigned a value of 1. We will use it to keep track of the number of times we execute the
outermost loop. Then we created an outer loop that will run twice (For Sa=0 to 1). We then nested

the loop we were using earlier counting fromO0to 9

starting count variable from $a to $b so as to avoid confusion with the outer loop). Finally, we

added two lines of code:

nside the outer loop (but we changed the

ConsoleWrite("Inner loop:"&Sloops& " set finsished"&@CRLF), and

Sloops+=1

Jayme Fishman, Copyright 2015 all rights reserved

45| Page

The first line of code is creating a new message that we will write to the console every time the
inner loop completes. We are using the Sloops variable we created to tell us how many times the
inner loop has run. The next line of code uses a special operator “+=" which adds the number
following the

“u_n

to the Sloops variable. Therefore, since Sloops started with a value of 1 when we
say Sloops+=1 the value of loops becomes 2.

'
NOTE: Loops can introduce a lot of power into your scripts — but they can also introduce
complexity. If you start to get overwhelmed try breaking your script down into pieces and testing
each piece separately before combining them (that goes for any code — not just loops).

The next type of a loop is another powerful way to repeat instructions. However, it can be very
dangerous if used incorrectly. It is called the “while” loop. It tests for a certain condition and
repeats the loop “while” the condition is true. It is dangerous because if loop never has a condition
that sets it to false it will keep running in an “infinite loop”. That means that the script will get stuck
running the same lines of code over and over again forever (or until you forcefully close it). On the
other hand, sometimes this will be your intention. You may have need to create a loop that is open
as long as you program is running. A common example is when you show a user interface (i.e. an
application with controls like buttons, text boxes, menus, etc) which we will over later. You would
not want to flash the controls for a split second only to have them disappear before a user could
interact with them. In that case, “while” can be employed to keep the application open. More on
that later when we cover interfaces.

The help file explains the syntax for this loop as follows:

While.. WENnd

Loop based on an expression.

While <expression>
statements

WEnd

Let’s test out a loop with a simple example building on some of the concepts we have already used.
In this example we will create a variable called Sa and assign it 0 (5a=0). Then we will create a while
loop that writes a message to the console as long as Sa is less than 10. We must also remember to
increase the value of $Sa with every pass or we will be stuck in an infinite loop. The code and the
output for this example appear below:

46 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 6 Example 6

el & % B

K oo gl

1 ; while loop example

2

3 fa=0

4

5 while $a<10

=) consolewrite("5a iz less then 10, The walue iz: "s5aczflCRELF)
7 fat=1

i WEnd

|
W

++11:05: 54 AUICheck ended.rc:0 L
FRunning: (3.3.8.1):C:VProgram Files‘\iutoIt3hautoiti.exe "C:\Documents an

ga is less then 10. The walue is:
ga is less then 10. The walue is:
ga is less then 10. The walue is:
fa is less then 10. The walue is:
fa is less then 10. The walue is:
fa is less then 10. The walue is:
fa is less then 10. The walue is:
fa is less then 10. The walue is:
fa is less then 10. The walue is:
fa is less then 10. The walue is:
+=11:05:54 hutoTt3.exe ended.rc:0
*Exit code: 0 Time: 0O.505

W00 -1 Mo s L O

.S
W

li=& ca=5 INS (CR+LF)

®
NOTE : The expression is tested before the loop is executed. That is why we see it stop at9. On
the 11%" pass $Sa would have been 10 would no longer be < 10. Therefore, the test would be false
and the loop would end. Also, it is important to note that you can also nest While loops.

You know what | am going to Do? | am going to “Do” loops “Until” we finish the topic. That’s right,
Do ... Until is another type of loop statement. The Autolt help file explains the syntax as follows:

47 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Do...Untll

Loop based on an expression.

Do
statements

Until <expression:>

Did you know that almost every topic in the help file comes complete with its own code example?
Not only that, but you can usually open the code up with the push of a button and test it out. Let’s
take a look at the code example for Do ... Until:

Example

Locel &1 =0
Do
MsgBox (0,
gl=51+1
Until £i = 10

Lets you pop open the
Open this Seript| example script and test it out.

The script should open up in SciTE when you click the button:

File Edit Search ‘iew Tools Options Language Buffers Help

el & Q Q¥
1 Local 5i = 0
2 Da
3 MagBox (0, "Walue of i is:", 71
4 1 1 1
5 Mmtil 7i 10
G

£ *

li=1 co=1 INS {CR+LF) R

From there, you can run it to see what happens. You will note that in this case we will see message
boxes appear that must be closed until the value of Siis equal to 10. What is the last value that you
see in the message box as you click through them? It should be 9. Why not 10? The answer is that

I”

it stops once the condition on the “until” line has been satisfied. In this case line 3 creates a

48 |Page
Jayme Fishman, Copyright 2015 all rights reserved

message box displaying the current value of Si while line 4 adds 1 to the value of $i and then adds it
back to itself (another way to do this is Si+=1 as we saw in the previous section). Therefore, the
value of Si increases after each message box. As a result when the message box display 9 as the
value of Si the very next thing to happen is that Si is increased to 10 at which point the loop stops
because it only goes until Si = 10.

It is important to note that the condition the Do ... Until loop is evaluating is tested after the loop is
run so the loop will be executed at least one time. This is different from the while loop which tests
before the condition is evaluated and, therefore, is run zero or more times.

’-@, REMINDER: Loops can be used to help us repeat actions for a certain number of times or until
a condition is satisfied. The For loop uses a variable to which we assign a starting value for the loop
count. Then we specify “To” what number we would like to count to (up or down). Finally, if we
desire to count by something other than +1 we can use the optional interval parameter to express
the value by which our starting variable will change (i.e. 2, 5, 10, -1, -3 etc). The Next keyword
signals that we are done supplying commands that we would like to run inside our For loop. While
loops test for a condition before executing the loop. As long as the condition is true the loop will
continue. Be careful not to create “infinite loops” (unless that is your intention) by ensuring you will
eventually get a false result and stop the loop. While loops test for the condition before the loop
runs so they will run zero or more times. “Do ... Until” performs a loop until a condition is met. It
tests for the condition after it runs so it runs at least one time.

Chapter 7: Custom Functions

We have already seen some examples of functions that are built-in to Auotlt. In Chapter 4 we were
introduced to the MsgBox function that we used in our first program to display “Hello World” and in
Chapter 6 we used ConsoleWrite to output the results of our loops to the screen within our SciTE editor.
Those functions are ready for use without any additional coding from us. Think of them as pre-packaged
lines of code that can be called or used from within our script simply by referring to them by name and
supplying the necessary arguments if required (information required by the function — though recall
some don’t require any arguments). Most (if not all) programming languages also let you write your
own functions. Autolt uses the keywords “Func” and “EndFunc” to create a user defined function as
follows:

; An exampple of 4 user function

Func myFunction
Jiur code will go here

M N = W D

EndFunc

49 |Page
Jayme Fishman, Copyright 2015 all rights reserved

In this example we are using the keyword Func to signal that we are creating a user defined function.
Then we are naming it “_myFunction()”.

®
NOTE : It is not required but rather recommended that as a “best practice” you start a user defined

o n

function name with the underscore to differentiate it from prebuilt functions. Also, note the way

the name starts off with a lower case “m” and the second word is capitalized. Itis a common practice to
make the names of your variables and functions easier to read my starting with lower case and
separating each word with the use of capital letters. The parenthesis that follow the name of our
function is where we would place any parameters that we wanted to use within the function. This
function is void of parameters so it is just an empty parenthesis. That means no additional information
is required to run the function (i.e. no parameters as in the case of the pre-built MsgBox and

ConsoleWrite functions we used earlier.

The code above won't actually do anything for two reasons. First, we have only created the user
defined function — we have not called upon it to do anything. Second, there is no code within the
function so even if we were to call it nothing would happen. Let’s change the example slightly by adding
some code and calling the function:

Code

Chapter 7 Example 1

File Edit 5earch View Tools Options Language Buffers Help

|D@ED¢‘|%| L] |"’?' |Qq¢'
1 Exampled.au3 2 Examplel.aud ™®
1 s An example of a user function
2 #include «MsgBoxConstants.ani3>
3
4 Func myFunction
= MagBox (sMB OK, "User Function®™, "Hello World™
&
7 EndFunc
& _myFunction
/ This is the code
that runs when the
This is how we call the function is called
function.

In the above example we have added a line of code within the body of our function to create another
Hello World message box. Then we added a line of code after the function to run the function. Now
every time that we want to create the message box with that message all we have to do is call our user-
defined function “_myFunction()” instead of typing out msgbox(SMB_OK,”User Function”,”Hello
World!”). That is not a huge savings of time but it can be when you consider that you can place as many
lines of code as you want within your function. Let’s try another example ...

50|Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 7 Example 2

File Edit 5earch View Toeols Options Language Buffers Help

Dl & [= Q at
1 ; An example of a user function
2 #include «MsgBoxConstants.ans3s
3
4 =] Func mathWithAnswers ($ffirstlum, $3econdium, $operator
5
& [-] Switch foperator
7 =] ca3e Soperator T4
B fanswer=5firstlumt$secondium
9 =] ca3e Soperator =
10 fanswer=5firstlum-5$secondilum
11 =] cage S0pErator B
12 sanswer=:sfirstHum*$secondilum
13 cage S0pErator oy
14 EndSwitch
15 Magbox (5MB OK, "Answer™, $an3awer
1a EndFunc
17
18 _mathWithfinswers (5, 3, "+"

The above example builds upon several things we have already learned. It may look somewhat complex
at first blush — but if we review what is happening you will see it is pretty straightforward. This user
defined function acts as a calculator that can add, subtract, multiply or divide any two numbers. The
function takes in three parameters: SfirstNum, SsecondNum, and Soperator. These are for the first
number, second number, and mathematical operators respectively. Inside the function we have added
a conditional statement in the form of a switch that will change the flow of our script based on the
operator that we pass as the third parameter. In other words, if we say we want to add we would need

“uxn

to pass “+” whereas if we want to multiply we would pass the “*”. The operator parameter is not really
the actual operator but rather a string (text) representation of it (because it is surrounded by quotes).
The switch then tests the value of operator argument to see which mathematical operation should be
used with the real operator (not in quotes). The Sanswer variable stores the results for us and the
message box displays those results. Finally, when we call the function we need to supply all three
parameters. In this case we have used (5,3,”+”) which means we want to add 5+3. Not surprisingly, the

script will produce the following output:

51|Page
Jayme Fishman, Copyright 2015 all rights reserved

This function could come in handy for doing some simple math and displaying the results in a message
box. However, there is at least one problem with it. The function will do whatever we tell it to —
nothing more and nothing less. If we allow it do things that are inadvisable or even impossible it could
crash the script or generate other unforeseen bugs. What if we called the function as follows:
_mathWithAnswers(5,0,”/”)? What would that do? We would be trying to divide 5 by 0. That is a no-
no. In this case, the consequence would be trivial. We will see an error in the message box. However,
what if we were relying on the answer for another part of our script? You get the idea. To guard against
that possibility we can use a conditional operator and modify our program to block our undesirable
scenarios (that we can foresee ahead of time). In this case, we might try something like this:

Code

File Edit Search View Tools Options Language Buffers Help
DEER & | = | Q o

Chapter 7 Example 3

1 An example of a user function

2 #include <MsgBoxConstants.aud>

3

4] Func mathWithAnawers($firstium, $secondium, $operator

5

[[] Switch %operator

7 = ca3e soperator "4

g fanswer=:firstlum+$secondium

SNl case foperator = "-F If the second number
10 tanswer=:5firstNum-%secondfum is zero tell them thE‘y’
11 = Cade S0perator A \

12 fanawer=5firatNum* $secondium cant do that.
13 = ca3e soperator S

14 = if £zecondiium 0 Then

15 I’_'SEBEK &MB O, "Error™, "You cannot diwvide by zerao™ (DthEFWiSE let them
16 = glae o !

17 fanswer=:%firstium/ $secondium divide the second
18 FndIf number.

15 EndSwitch

20 MagBox | $MB 0K, "Answer"”, $anawer

21 EndFunc

22

23 _mathWith&nawers (5,0, "/ "

The modifications in the above code “trap” the error that we were concerned about and take it down
another path. Specifically, if the second number is zero then instead of doing the division it will explain
to the user that they can’t divide by zero ... otherwise, it will proceed. You can see we used our old
friend If ... Then ... Else to accomplish this new error trapping functionality.

Chapter 7 Section 2: Variable Scope

When we first started talking about variables in Chapter 2 | intentionally skipped some information
about their usage. Specifically, variables also have an attribute called scope. This dictates where within
the script they can be used and recognized. The scope can be either local or global. | did not cover it
earlier because the function is the area that creates the greatest opportunity for differentiation — and

52|Page
Jayme Fishman, Copyright 2015 all rights reserved

we just covered functions. This is because a global variable will be recognized by the entire script (inside
and outside of functions). By contrast, a local variable can only be seen within the function that uses it
unless: (a) we force it to be global in scope by using the global keyword or (b) a global variable of the
same name exists (in that case we can still force it be local using the keyword local). On the other hand,
a variable that is declared outside of the function is global in scope. The Autolt help file summarizes
these situations as follows:

L
[
m

A variable's scope is controlled by when and how you declare the variable. If you declare
a variable at the start of your script and outside any functions it exists in the Global
scope and can be read or changed from anywhere in the script.

If you declare a variable inside a function it is in Local scope and can only be used within
that same function. Variables created inside functions are automatically destroyed when
the function ends.

By default when variables are declared using Dim or assigned in a function they have
Local scope unless there is a global variable of the same name (in which case the global
variable is reused). This can be altered by using the Local and Global keywords to
declare variables and force the scope you want.

The help file section above that addresses variable scope also references the keyword Dim. The use of
this keyword is still supported to declare variables. However, best practice is to use either the local or
global scopes instead. Side note: Dim is a funny key word. So far many of the keywords we have
encountered have been somewhat descriptive of their usage. The origin of Dim morphed from the
longer term “dimension” which was originally used to declare the dimension of an array of values (i.e. an
“Array”) which we will cover in the next chapter. It was shortened to Dim and applied to all variables —
and arrays.

REMINDER: Autolt has many pre-built functions that can quickly add power to your scripts. They
need to be called with the appropriate number of parameters as specified in the help file. However, you
can also create your own functions with the keywords Func and EndFunc. You can also name your
function whatever you want although best practices dictate that it start with an underscore (“_") to
differentiate it from the pre-built functions. Once your function is written you can call it from within
your script as many times as you like which, just like the pre-built functions, can reduce the amount of
code you have to write. It is also a great way to organize your code for testing and debugging one
section at a time. For that reason, try to avoid enormously long functions and break them into smaller
pieces when possible. Variables can be local to a function or globally accessed from anywhere in the

script. Declaring a variable outside a function makes it global by default. Declaring it within a function

53| Page
Jayme Fishman, Copyright 2015 all rights reserved

|”

makes it private unless you use the keyword “global” or there is already a global variable of the same
name outside of the function. You can also force the variable to be local with the keyword local. Finally,
while you don’t have to declare variables you can optionally do so with using either local or global to

define their scope.

Chapter 8: Arrays

You will see reference to the term “array” in the Autolt help file. So what is an array? Think of them as
variables that hold more than one piece of information. More precisely, an array is a data structure
that allows you to hold numerous data elements that you can access by referencing an index to their
position. For example, you may want to store three names in your array. To do so you could say:

dim SnamesArray[3]=["John","Steve","Bob"]

In this case, we are holding three items so we might say the upper boundary is 3. That value must be
specified within brackets following the name of our array. Brackets must also be used to hold the items
we are storing in the array and those items must be separated by commas. The Array starts with a zero
index so although there are three values the indices are: 0, 1, and 2 for those three items. Therefore, if
you want to reference Steve you would say SnamesArray[1]. Bob would be SnamesArray[2]. If you try
to reference an index that is not part of the specified range you will get an error. This is what it might
look like in practice when we reference the second item of the above array:

Code
Chapter 8 Example 1

1 #include «<MsgBoxConstants.and

2 global fnamesArray|3 "John", "Steve™, "Bob™

3 Msgbox (SMB OK, "Who is second in the array?™ "Angwer: "sinamesArrav[l
4

Who is second in the array? “

Answer: Steve

OK

You can see that by referencing the index position of 1 we see “Steve” even though Steve is the second
entry. This is a consequence of the zero based index.

#
NOTE: Although the boundary of the array is specified when it was created i.e. the “3” in the
SnamesArray[3] - the upper most index in the array is 2. This is because we have zero based index. Itis

54| Page
Jayme Fishman, Copyright 2015 all rights reserved

advised to keep all the elements of the array the same datatype. As you may recall from Chapter 1
Autolt only has one official datatype called variant. However, from the variables usage it Autolt will
assign an internal datatype of string, integer, double, etc. In our example all three values are of the
internal datatype string (meaning text within quotes).

Arrays can also be multi-dimensional. That means that you can have an array that looks like this:
dim Speople[3][2] = [["John",34],["Steve",23],["Bob",41]]

Now we have three entries with 2 pieces of information per entry: name and age. To get Steve’s name
and age we would do something that resembles the following:

Code

Chapter 8 Example 2

#include «<MsgBoxConstants.aud>
dim speople[3] [2 "John", 34 "ateve™, 23 "Bob™, 41
Magbox (sMB OK, "™, $people [1] [0]&™ is "sspeople[l][1

" YEArs o

Hh

[=1]
[1#]

n

W= L Ra

Steve is 23 years of age

OK

Notice the way we declare our array and access the information within has changed slightly because we
now have a two dimensional array. The boundaries of each dimension are 3 and 2 respectively; three
items with two pieces of information per item. The brackets used to open and close the array []
encapsulate the entire array as well as each pairing. Then when we reference the data we must use
both dimensions. We already know that to reference a specific person our choices are 0, 1, or 2 because
there are three entries with a zero based index. That has not changed. However, since there are two
pieces of information concerning the person we are referencing we need to specify which one we are
after: name or age. Since there are only two values in our example (name and age) we will always only
ever reference 0 or 1. We will use 0 for name and 1 for age. Therefore, Speople[1][0] is referring to the
name in the second pair while Speople[1][1] is referring to the age in the second pair. How about if we
wanted to find Bob’s name and age in the array? What would that look like? It would be Speople[2][0]
for Bob’s name and Speople[2][1] for his age (John would be name: $people[0][0] and age:

Speople[0][1]).

| realize that concept of creating a list of values and referencing them by an index number can seem
confusing. Why would we do that? Your script may use a lot of complex data. The ability to store it,
augment it, and access it quickly with a small amount of code is very powerful. Also, consider the loops

55|Page
Jayme Fishman, Copyright 2015 all rights reserved

that we learned about earlier. Think about how the “For ... Next” loop uses a number that increases
with each pass the loop executes. Combining a loop with an array is a natural fit. Take our example we
just covered and let’s loop it:

Code
Chapter 8 Example 3

#include <MsgBoxConstants.anld>
dim fpeople[3][2 "John", 34 "Stewve™, 23 "Bob™, 41

Hh

[a1]
1]

1]

MagBox (sMB_OK, "™, Speople[$a] [0]&™ i3 "ztpeople[fa][1 VERTS O

\ =~

$a is pulling double duty. It is increasing the loop
and being used to reference the index of the array.

[T A T P L N R

T:‘cr 23=0 to UBound(speople) -1

In the above example you will note that we are creating a loop that starts at zero (for $Sa=0). When does
the loop end? When we covered loops earlier we specified a value to stop at 10, 17, 100, etc. or
dictated that the loop stop when a condition was satisfied. Now we are using a pre-built function called
UBound to tell us the stopping point which will be the upper boundary of the Speople array less 1. The
upper boundary is 3. Why do we then subtract 1 from that value to create the number of loops we want
to perform? Because of the zero based array. The code will loop three times starting at 0: 0, 1, and 2. If
we used the upper boundary it would go four times: 0, 1, 2, and 3; that would be a problem for us as we
only have three pieces of data. If we let the script look for a fourth piece of data when there are only
three we will get an error.

Now that we know the script will loop exactly three times let’s take a look at what will happen inside the
loop. As you can seeg, it is the exact same thing that was happening before with one change: now we
don’t have to reference which person we want to read about in our message box. The loop will show
them all to us. It can do this because the value of Sa is increasing by 1 with each pass. Therefore, we
can use it to reference it when we create our message box to point to the appropriate index in the array
like so:

MsgBox(SMB_OK,"",Speople[Sa][0]&" is "&Speople[Sa][1]&" years of age")

The above line of code that uses the $a variable within the first dimension of the array to increase from
0 — 2 with each pass of the loop. Since there can only be two values in the second dimension: name and
age, we simply write 0 and 1 after the $a for the second dimension. When you run the code in this
example you will see three message boxes showing John, Steve, and Bob along with their ages in the
order they appear in the array. The loop has the same impact as writing out the following three lines of
code:

This is the equivalent of the image below with each pass of the loop:

56 | Page
Jayme Fishman, Copyright 2015 all rights reserved

1 MagBox (sMB OK, "", fpeople[0] [0]&™ i3 "=fpeople[0] [1]&™ wears of age™); pass 1
2 MagBox (sMB OK, "", fpeople[l] [0]&™ is "z%people[l][1l]&™ wyears of age™); pass 2
3 MagBox (sMBE OK, "", fpeople[2] [0]&™ is "zfpeople[2] [1]&™ wyears of age™); pass 3

REMINDER: Arrays can hold numerous data elements and allow you to reference them by their
index value. Most arrays have an index that starts with zero unless otherwise specified so the index will
not match the upper boundary of the array. Therefore, when looping through an array you should make
sure you loop to the upper boundary less one. This can be done with the UBound function followed by
the array of interest as an argument less 1: UBound(SmyArray)-1. Arrays can also be multi-dimensional.
You can reference any value but be sure to provide all dimensions when doing so or you may get an
error.

Chapter 9: Graphical User Interfaces (GUIs)

Up to this point we have learned about data, operators, conditions, and loops. Those are the basic
building blocks for almost any application. In fact, with those concepts in hand you could go off and
start to write your own scripts. However, sometimes you may want users to interact with your scripts.
One of the most popular ways to accomplish this is through the use of a Graphical User Interface or GUI.
GUIs contain various controls like buttons, areas to input text, dropdown menus etc. An example GUI
from the Autolt help file is shown below.

:.! Sample GUI = @ |5

MenuCne MenuTwo MenuThree MenuFour

Sample Fic @ One | Two
Ed

P

Sample Tab with tabtems

Sample avi
Progress: » m Sample Combo -
* — UpDown
Sample Edit Control | Sample Group 2 =
- a=iE @ Radio One =
r b lcan
Radio T Green
") Radio Two
List =
One Slider: U
Twie ™
b Sample Input Box

23D ber 2011
ecember E _ TrecView M
(Date control expands into a calendar) L Teml [7]With =

—_— - Irem2 STVS_CHECK
Sample Button Checldme * ! _ -
Pl i [

57|Page
Jayme Fishman, Copyright 2015 all rights reserved

From the Autolt help file under “GUI Concepts”

GUI / Control Layout
Before we get too far into GUI creation we should understand the coordinate system used to place GUI

controls. In other words, how do we tell our program where precisely to place our button, input field,
etc.? The answer is by using an X,Y coordinate that is very similar to basic graph plotting that you may
have done in grade school. The following image illustrates this with a 300 x 300 GUI that does not yet
contain any controls. Knowing the size of our GUI we could quickly determine that the center point is
X=150, y=150 and so on. We can use any X,Y point within the 300x300 to place our controls.

GUIs and controls are laid out with XY

positions. This illustrates a 300 x 300

pixel GUI and some of the XY points it
0,0 contains.

300.0

0,300 X 300.300

#
— NOTE: you can refer back to this image as we progress through some examples. We will do some

basic calculations to determine where to place the controls we create in our examples.

GUI Creation
GUIs can be created with a series of functions starting with the aptly named GUIcreate. Let’s take a

closer look at that function and its parameters.

58| Page
Jayme Fishman, Copyright 2015 all rights reserved

Function Reference

GUICreate

Create a GUI window.

GUICreate ("title"™ [, width [, height [, left = -1 [, top = -1 [,
style = -1 [, ex5tyle = -1 [, parent = 01111111 }
Parameters
title The title of the dialog box.
width [optional] The width of the window.
height [eptional] The height of the window,
[optional] The left side of the dialog box. By default (-13, the window is centered. If
left . .
defined, top must also be defined.
top [optional] The top of the dialog box. Default (-1) is centered
[optional] defines the style of the window. See GUI Control Styles Appendix
Use -1 for the default style which includes a combination of $WS_MINIMIZEBOX,
style EWS_CAPTION, $WS_POPUP, 8WS_SYSMEMNU styles.
Some styles are always included: $WS_CLIPSIBLINGS, and $WS_SYSMEMNU if
FWS_MAXIMIZEBOX or $WS_SIZEBOX is specified.
[optional] defines the extended style of the window. See the Extended Style Table
exShyle below.
1ty Use -1 for the default, which is no extended styles.
Farced styles: $WS_EX_WINDOWEDGE
parent [optional] The handle of ancther previously created window - this new window

then becomes a child of that window.

The Autolt help file section on GUIcreate.

We can see that there is only one required parameter: title. The remaining optional parameters are

used to dictate the GUIs size, placement, style, and behavior.

If you supply a title the script will create

a GUI with some default dimensions but it won’t do much. It may not even stick around very long.

Why? Because the script is reading the instructions and executing them. When it runs the GUIcreate

function the script will end. So what would happen? We would see it flash up on the screen for a

moment and then disappear. How might we remedy this? Do you remember what | said in Chapter 6

about While loops? Here is a reminder:

Jayme Fishman, Copyright 2015 all rights reserved

59| Page

“You may have need to create a loop that is open as long as you program is running. A common
example is when you show a user interface (i.e. an application with controls like buttons, text boxes,
menus, etc) which we will over later.”

If we combine the while loop with the creation of a GUI we can get it to stay around as long as we want.

Let’s take this in steps. First, let’s try to just call the function with the required parameter of title and
see what happens. To do that, type this into SciTE and run it: GUIcreate(“Test GUI”). Did you see
anything? Probably not. That is “When windows are created they are initially hidden so you must use
this function to display them (@SW_SHOW)” (from the help file). In order to that we need to add a line
of code so our script would now look like this:

GUIcreate(“Test GUI”)
GUISetState(@SW_SHOW)

If you run those two lines of code you will see the GUI flash up on the screen and disappear. We know
the cause of this. Now we need a solution that will stop it using a while loop. Don’t do the following,
let’s just take a look at it to understand what it does and does not do:

GUIcreate("Test ET_TII"
GUISetState (@SW_SHOW

1

2

3 while 1
L

5 WEnd

The above code will create a GUI and show it forever. Why? Because there is nothing in the while loop
to ever set the condition being tested (1) to anything other than 1. Isn’t that what we wanted? We did
want the GUI to stay around for more than a flash. However, forever is a bit longer than we probably
wanted. Therefore, we need a way to close the GUI. The following code snippet details an approach
we could take to accomplish this:

60| Page
Jayme Fishman, Copyright 2015 all rights reserved

Chapter 9 Example 1

1 % #include <GUIConstantsEx.auls> :
2 #include <WindowsConstants.and 1
3 G0Icreate ("Test GUIT
4 GUISetState (BSW_SHOW)
5 While 1
& $nMag GUIGetMag
Switch &fnMsg

Case $GUI_EVENT CLOSE

Exit

EndSwitch
12 WEnd

#1) In this case, we are including Autolt GUI libraries that help with styles and behaviors. The
Windowsconstants.au3 file is referenced in the notes to the GUIcreate function. You can refer to that
section of the help file for more information.

#2) This is what we started with. We use GUIcreate and GUISetState to create and show the GUI
respectively. The problem was that it flashed up on the screen and disappeared.

#3) This is where we setup our While loop. It still says “While 1” which would theoretically run forever.
However, now there is some additional code below that will save us from that fate.

#4) Here again we are using a switch which as we recall from Chapter 5 is a conditional statement. In
this case, the switch is triggered by the value of SnMsg — a variable that was included within the from
the #include files at the top. We can think of this in terms of the GUI “listening” for a message and
performing different behaviors based on the message contents.

#5) This is the only case within our switch. In other words, the only thing that the switch could do is to
listen for a message that is SGUI_EVENT_CLOSE. As the name would suggest, that event is triggered
when a user attempts to close the GUI.

#6) The case SGUI_EVENT_CLOSE close would not do anything if a user tried to close the GUI without
some additional code under it. Therefore, we have added a new keyword called “Exit” that will
terminate the script (i.e. end the program).

Putting all these pieces together we have created a GUI that we are showing a user which will stay open
until the user closes the GUI (with the red arrow in the upper right hand corner):

6l|Page
Jayme Fishman, Copyright 2015 all rights reserved

If you are underwhelmed at what we have built and think that it was a lot of work to do nothing — don’t
worry. It will get easier from here. That was just the basic framework to demonstrate how the GUI
works. Also, after we get a few more concepts down we will explore how to design a GUI without
writing any code using some free tools that come with Autolt.

The Button
The following code will add a button called “Push ME” to our GUI:

Code

Chapter 9 Example 2

1 #include <GUIConstantsEx.an3>
2 #include <WindowsConstants.aun3>
3 GUIcreate ("Test GUI™)
4 GUISetState (BSW_SHOW)
5 GUICtrlCreateButton ("Push ME™, 175,200,735, Ed}
6 While 1
T tnMsg = GUIGetMsag()
8 Switch snMsag
o Case #GUI_EVENT CLOSE
140 Exit
11
12 EndSwitch
13 WEnd
14

The parameters (found in the help file) are title, left, top, width, and height. The title is whatever we
want the button to display. The left and top parameters dictate where the button will be positioned
within our GUI. If you set the dimensions of a GUI using the optional parameters as you create it you
will have a much easier time placing controls. In the present case, | played around with the position
because we used the default dimensions (more on this later). When you run the code you should see
the following:

62|Page
Jayme Fishman, Copyright 2015 all rights reserved

Try pushing the button. Nothing happens when you do that. That is because we have not told the GUI

to listen for the button push. That is a new event that we need to introduce as a case. To that, we could
add the following to our script:

Code

Chapter 9 Example 3

%]

#include <GUIConstantsEx.and>
#include <WindowsConstants.aun3s
GUIcreate ("Test GUI™)
GUISetState (ESW_SHOW)

1 T #include <MsgBoxConstants.and>

L

L1 sbutton=GUICtrlCreateButton| "Push ME", 175, 200,75,50)
T] While 1

8 (nMag = GUIGetMag()

9 Switch snM=ag

1a case Sfbutton

MagBox (2MB_OK, "Button Push™, "¥ou pushed me!™)
Case sGUI_EVENT CLOSE
Exit
EndSwitch
& WEnd

63| Page
Jayme Fishman, Copyright 2015 all rights reserved

#1) When you successfully create a GUI control Autolt “returns” a control ID to you. This ID can be used
to interact with the control if you store it in a variable. In this case, Sbutton is storing the control ID of
the newly created button control.

#2) In this step we are adding Sbutton as a case to our switch within the while loop that is listening for
GUI messages. In other words, if our button control (the ID of which is stored in that variable) is pressed
then the program will run whatever code we have in the case for the button.

#3) This is the code that we want to run when the button is pushed.

'
NOTE: You don’t have to put all your code in the switch under the case. Remember, you can create
large functions elsewhere in your script and simply reference the name(s) of those functions in the
switch that is tied to the GUI control. This make it much easier to read your code.

When we tie it all together and push the button, this is what we will see:

(A Test GUI = =

Button Push H

You pushed me!

0K

NOTE : To interact with a control in the GUI we can create a case within the switch located in our
while loop (used to keep our program running). The case will listen for the controlID returned to us
when we successfully created the control. We store that ID in a variable and then “listen” for
interaction with it. When the case is triggered the script will run the code contained in the case.

64|Page
Jayme Fishman, Copyright 2015 all rights reserved

The Input Box

It was great making a button and having it do something when we pushed it. However, we often need
to collect information from a user in order to make our program more useful. One way to do that is
with an input field. The function for this is described below in the Autolt help file:

GUICtrICreatelnput

Creates an Input control for the GUI.

GUICtrlCreateInput ("text", left, top [, width [, height [, style =
-1 exStyle = -11111)
Parameters
text The text of the control.
The left side of the control. If -1 is used then left will be computed according to
left R
GUICoordMaode.
The top of the control. If -1 is used then top will be computed according to
top -
GUICoordMaode.
width [optional] The width of the control (default is the previously used width).
height [optional] The height of the control (default is the previously used height).
[optional] Defines the style of the control. See GUI Contral Styles Appendix.
sty default (-1) : $ES_LEFT, $ES_AUTOHSCROLL
B forced styles : $WS_TABSTOP only if no $ES_READONMNLY. $ES_MULTILIME is
always reset,
exstyle [optional] Defines the extended style of the control. See Extended Style Table.

default { -1) @ $WS_EX_CLIENTEDGE

As you can see, the parameters to create an input are very similar to those used to create GUI. Let’s
incorporate an input field into our program. As we do this, we will also change the GUI a tiny bit by
adding our own width and height parameters rather than using the default size. This will make it easier
to place our controls. The following code creates variables that are used in the script to set the width
and height of the GUIL. We can the reference the variables as the width and height parameters instead
of using numbers.

SguiWidth=300 ; the width of our GUI

SguiHeight=300 ; the height of our GUI

65|Page

Jayme Fishman, Copyright 2015 all rights reserved

Next, we will create similar width and height variables for our button and the input field:
SguiBtnWidth=75 ; the width of our button

SguiBtnHeight=50 ; the heighr of our button

SinputWidth=150 ;the width of our input field
SinputHeight=30; the height of our input field

Positioning GUI Controls

A

'-@, REMINDER: the layout chart we saw at the beginning of the chapter that explained X,Y
coordinates? Now may be a good time to refer back to it as we are about to do some basic
mathematical operations to calculate the placement of our button and input field’s position (i.e. their

“left” and “top” parameters).

In order to center the button and input in the middle of the GUI we need to use a small bit of math. We
need to take the width of the GUI and divide by 2. This is the middle of the GUI. However, the button
and input also have their own widths. Therefore, we need to subtract the width of the button and input
after they are divided by 2 to center them (this takes into account their width as part of centering
process). Then we need to do the same thing for their height.

; math to center the controls
SbuttonTop=(SguiHeight/2)-(SguiBtnHeight/2)
SbuttonLeft=(SguiWidth/2)-(SguiBtnWidth/2)
SinputLeft=(SguiWidth/2)-(SinputWidth/2)
SinputTop=((SguiHeight/2)-(SguiBtnHeight/2))-(SinputHeight+10)

Now let’s walk through some of the math in more detail as we take a closer look at how we placed the
input control. First, we positioned its left most coordinate. This was easy. We did the same thing as our
button code above except now we are using the input width:

(Sguiwidth/2)-(SinputWidth/2)

Next we had to position it’s height relative to the top of the GUI. This was a bit more complicated
because if we used the same exact calculation as the button the input field would be placed directly on
top of the button. That would have obscured the button so instead we had to take what we did for the
button, factor in the height of the input field, and then add a 10 pixel buffer so that the input field
appeared above the button. Had we not done this the two controls would have been laid out on top of
one another and we could not interact with the properly:

66| Page
Jayme Fishman, Copyright 2015 all rights reserved

((SguiHeight/2)-(SguiBtnHeight/2))-(SinputHeight+10)

Note the use of the parenthesis that dictate the order in which the operators are evaluated. The first
part the equation is the same our calculation to find the top parameter for the button. Then we
subtracted the height of the input control plus the aforementioned 10 additional pixels. This resulted in
placing the input control above the button by 10 pixels.

When we run our GUI it will look like this:

The code appears in full below:

67| Page
Jayme Fishman, Copyright 2015 all rights reserved

Chapter 9 Example 4

1 #include <MsgBoxConstants.ausd>

2 T = lude «GUIConstantsEx.aud>

3 #include <WindowsConstants.aud>

4

5 SgquiWidth=300 ; the width of our GUI

[tguiHeight=300 ; the height of our GUT

7

B tgquiBtnWidcth=75 ; the width of our butteon
L] tguiBtnHeight=50 ; the heighr of our button
10

11 finputWidth=150

12 sinputHeight=30

13

14 shuttonTop=(fguiHeight/2) - ($gquiBtnHeight,/2
15 sbuttonleft=($guiWidth/2) - (SguiBtnWidth/2
16 $inputleft=($guiWidth/2) - ($inputWidth/2

17 SinputTop=(($§guiHeight/2) - ($gquiBtnHeight,/2)) - ($inputHeight+10
18

19

20 GUIcreate ("Test GUI™, $quiWidth, $quiHeight) ; using our wvarisbles to set height & width
21 GUISetState (@SW_SHOW

son the following line we are using some math and some varisbles to center the button by taking

; width and height of the GUI and button

[SN)
[LI]
—

24 sbutton = GUICtrlCreateButton "Push ME"™, fbuttonleft, sbuttonlop, SguiBtnWidth, SguiBtnHeight
25 S5input=GUICtrlCreatelnput ("Enter text here", Sinputleft, SinputTop, SinputWidth, §inputHeight
26

27 [<] While 1

28 tnMag = GUIGetMsg

29 [—] Switch snMsg

30 = cage fbutton

31 MagBox ($MB OK, "Button Push”™, "You pushed me!™

32 [=] Case sGUI_EVENT CLOSE

33 Exit

34

35 End3witch

36 WEnd

Why do this instead of just entering the positions we want as numeric values? One reason would be
that it allows us to place the button dead center in the GUI by using code. Another is that we may
change our minds a bit as we add controls. What if we want to make the GUI bigger and keep the
button in the center? What would we have to do? If we did not use variables we would have to
manually calculate the position relative to the GUI and then update the left and top numeric parameters
accordingly. Using the above approach it is automatic. When we make changes to the Sguiwidth and
SguiHeight variables. The code does the work for us.

s
NOTE : using variables to position GUI controls can save you time if you decide to make changes to
your GUI. The controls can be setup to reposition themselves so that any change you make impacts all
other GUI elements without any additional coding.

68| Page
Jayme Fishman, Copyright 2015 all rights reserved

Listening for control messages

Now we are getting somewhere. We have a GUI, button, and input box. We can also make changes to
the layout with relative ease and everything will reposition itself. Of course, when we push the button
all that will happen is that we will see the message box that we wired to the Sbutton earlier. Let’s use
that same message box to present whatever text we have typed into the input field. To do that, we will
need to read the input control and store the information in a variable. Fortunately, there is a function
for this called GUICtrIRead.

GUICtrIRead

It has one mandatory parameter of controllID. Remember that when we created the button we stored
the controlID in the button variable? We are doing the same thing for the input control when we placed
the variable Sinput= in front of its creation. Therefore, to read the what is in the input control all we
need to do is GUICtrIRead(Sinput). However, we will want to store that message in a variable for later
use so let’s do this: SinputContents= GUICtrlIRead(Sinput). Then we only need to change the text
parameter in the message box to reference our SinputContents variable instead of our hard coded text.
This is what it would look like. Try it out yourself.

Read the input

While 1 control text here
$nMsg = GUIGetMag
Switch $nMag

—| case fbutton

f$inputlontents=GUICtrlRead ($input
= MagBox (sMB _OK, "Button Push", $inputContents
= Case $GUI_EVENT CLOSE
Exit
- EndSwitch Have the MsgBox
L WEnd display the text from the

input contral

Alternatively, we could have done it all in one line of code as follows:

The text displayed in the
MsgBox is being read

26

27 [While 1 from the input control
28 tnMag = GUIGetMag

29 = Switch snMsg

30 = case Sfbutton

31 MagBox ($MB OK, "Button Push™, GUICtrlRead ($input
32 = Case $GUI_EVENT CLOSE

33 Exit

34

35 EndSwitch

36 WEnd

69| Page
Jayme Fishman, Copyright 2015 all rights reserved

Simple GUI Calculator

A great extension of this example would be to use the custom math function we created in Chapter 7.
Remember it? It allowed us to take any two numbers and perform a mathematical operation on them.
At the time, we were limited to manually entering the values for the math operations every time we
wanted to do a calculation (i.e. _mathWithAnswers(5,3,”+”). Now we can add a few controls to our GUI
and we will have a dynamic calculator. We already have one input control. That could be for the first
number. However, we will need to reposition it slightly by moving it up to allow enough room for
another input field. To do this we could change our top position calculation as follows:

$inputTop= fguiHeight/2) - (sgquiBtnHeight/2)) - ((§inputHeight*2)+10

Note: we are using 2 x the height of the control giving us
some additional room for the new input control

Now we need to add a second input control for the second number. We already have all the math for
how the first two controls layout. No we can simply add a new line creating Sinput2. The only
parameter we need to change is “top”. To do this so that the new input appears 10 pixels above the old
one we could define Sinput2Top as:

Sinput2Top==5inputTop+ (SinputHeight+10

Here we are adding to the top position of the first input
so this control will appear beneath it with a small 10
pixel cushion

The complete line of code would look like this:

$input2=GUICtrlCreateInput ("Enter text here”, §inputleft, $input2Top, $inputWidth, §inputHeight

Note we used identical parameters to Sinput with the exception of top. Now the GUI looks like this:

70| Page
Jayme Fishman, Copyright 2015 all rights reserved

One problem is that we will always have to overwrite the existing text in our input boxes. To fix the
problem we could set the title parameter to
the input control will be blank at the start.

wn

(double quotes with no space). This is an empty string so

That is all well and good but how about our mathematical operator? What could we use for that? If we
use an input box we run the risk of a user typing in things that aren’t operators. We know that the
operator can only be one of four choices: +,-,/, and *. Therefore, it may be best to give those and only
those choices to a user. One way to accomplish that could be with the use of a combo box control. A
combo box is a dropdown menu that will contain whatever values we feed it as choices for the user.
The help file shows the function required to create a combo box:

71| Page
Jayme Fishman, Copyright 2015 all rights reserved

GUICtrlCreateCombo

GUICtrICreateCombo

Creates a ComboBox control for the GUI.

GUICtrlCreateCombo ("text™, left, top [, width [, height [, =tyls =
=1 [, exScyle = =1]]1]11]1)

Parameters

text The text which will appear in the combeo contral,

left The left side of the control. If -1 is used then left will be computed according to

GUICoordMode.

The top of the contral. If -1 is used then top will be computed according to

top GUICoordMode.
width [optional] The width of the contral (default is the previously used width).
height [eptional] The height of the control (default is the previously used height).

[optional] Defines the style of the control. See GUI Contral Styles Appendix.
style default (-1) : SCBES_DROPDOWM, SCBS_AUTOHSCROLL, WS _VSCROLL
forced style : SWS_TABSTOP

[optional] Defines the extended style of the control. See Extended Style Table,
default { -1) : SWS_EX_CLIENTEDGE

exStyle
Our biggest problem will be where to place it. | would propose to the left of the two input boxes just

between them on the height so it looks like a math equation. To do this we would create the following
variables:

$comboWidth=5(

fcomboHeigh=30
Scomboleft=5inputleft- (ScomboWidth+10
ScomboTop=(($inputTop+Sinput2Top) /2

The first two variables set the width and height of the combo control. The second two variables
Scomboleft andScomboTop are storing the positions we calculated to place the combo control in our
GUI. The Scomboleft calculation starts with the left position of the input controls. Then it subtracts the
width of the combo control + another 10 pixels. This means it will appear 10 pixels to the left of the
input controls. Next we calculate the topmost position of the control. We want it to appear between

the two input controls so we add the top positions of those controls together and divide by two to find
the middle.

The line of code we would add to our GUI section would look like this:
#combo=GUICcrlCreateCombo("Oper™, ¢comboleft, $combolop, $comboWidch, $comboHeigh

With that control added out GUI now looks like this:

72| Page
Jayme Fishman, Copyright 2015 all rights reserved

The complete code is getting a bit long but it is as follows:

73 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

i{#include <MzsgBoxConstants.aud>

Chapter 9 Example 5

#ginclude «<GUIConstantsEx.auld>
#include <WindowsConstants.aul>

SquiWidth=300 ; the width of our GUI
sguiHeight=300 : the height of our GUI

¢guiBtnWidth=75 ; the width of our button
tguiBtnHeight=50 ; the height of our button

finputWidth=150
sinputHeight=30

¢buttonTop=($guiHeight/2) - ($guiBtnHeight,/2
tbuttonleft=($guiWidth/2) - (SguiBtnWidth,/2)
finputleft=(fguiWidth/2) - ($§inputWidth/2

SinputTop= (($guileight/2)- (sguiBtnHeight/2))-(($inputHeight#*2)+10)
sSinput?Top=%finputTop+ ($inputHeight+10

$comboWidth=50

ScomboHeigh=30

scomboleft=5finputleft- (fcomboWidth+10
scomboTop=(($inputTop+SinputiTop) /2

GUIcreate ("Test GUI", SguiWidth, SguiHeight) ; using our variahles to set height & width
GUISetState (ESW_SHOW)
[E ; on the following line we are using some math and some variavles to center the button by taking
s width and height of the GUI and the button
fbutton = GUICtrlCreateButton ("Push ME™, sbuttonleft, sbuttonlop, fquiBtnWidth, fguiBtnHeight)
sinput=GUICtrlCreateInput ("Enter text here”, finputleft, $inputTop, finputWidth, $inputHeight)
finput2=GUICtrlCreatelnput ("Enter text here”, finputleft, $input2Top, $inputWidch, $inputHeight)
Scombo=GUICtrlCreateCombo ("0per™, scomboleft, fcomboTop, ScomboWidth, $comboHeigh)
While 1
snMag = GUIGetMagi()
Switch #nMsg
—| case fbutton

finputcontents=GUICtrlEead ($input
= MsgBox (SMB OK, "™, "Text from input ",$inputcontents
= Case #GUI_EVENT CLOSE

Exit
- EndSwitch

— WEnd

The problem is that our combo dropdown has no values. If we add the following line to beneath the line
where we created the combo control all of our mathematical operators will be available in the
dropdown:

GUICtrlSetData(-1, "+|-[/1*", "+")
|

The -1 is simply a reference to the preceding control. Because this code was placed under the combo
control it is referring to that control. What follows is a pipe delimited string of values for the combo

74| Page
Jayme Fishman, Copyright 2015 all rights reserved

control (the pipe looks like a straight vertical line and is usually above the enter key on your keyboard).
The final value after the initial string and last comma is the optional default. In this case we are
defaulting to “+”.

Now our GUI has those options available:

To use our calculator function from Chapter 7 we need to add it to this script. We could use the
keyword #include for that. Refer back to Chapter 7 for that code. When we include it — we need to
make sure that we remove the last line that triggered the function — all we want is the function. If we
were to include that line it would calculate 5+3 and show us the answer before we could use our
calculator. By eliminating that last line (19), we just get the math function ready to go for whatever we
call upon it to do.

75| Page
Jayme Fishman, Copyright 2015 all rights reserved

File Edit 5earch View Tools Options Language Buffers Help

Dl & | ~[Q at
1 : An example of & user function
2 #include «MagBoxConstants.and>
3
4 =] Func mathWithAnswers ($firstlum, $3econdfum, $operator
5
G [-] Switch Soperator
7 -] cade Soperator = "4+
B fanswer=5firstlumt$secondium
g9 -] cade Soperator = "-"
10 fanswer=5firstium-%secondilum
11 -] cade Soperator = "*"
12 fanswer=5firstlum*$secondlum
13 cade Soperator = /"
14 EndSwitch
15 MagBox (SMB O, "Answer"™, Sanawer
16 EndFunc
17
18 _mathWithinswersis, 3, "+"

Remaove this line and
save as "calc.au3” inthe
same directory as your

You should save that script from Chapter 7 with the math function in the same directory as your GUI and
name it “calc.au3”. Toinclude it in our GUI script we would reference it at the top with the other
includes:

| #include <GUIConstantsEx.aud>

#include <WindowsConstants.auld>
- #include <calc.auld>

Now the math function we wrote in Chapter 7 is now available to us. Remember that we are passing
that function three arguments: first number, second number, and mathematical operator. We can get
the first and second number from our two input controls and the operator from our dropdown. This
would look like:

SfirstNum=GUICtrIRead(Sinput)
SsecondNum= GUICtrlRead(Sinput2)
Soperator= GUICtrIRead(Scombo)

To make this work with our GUI we might alter what happens when we press the button once again as
follows:

76 |Page
Jayme Fishman, Copyright 2015 all rights reserved

- =1
case Sbutton
SfirstNum=GUICtrlRead$input)
fzecondium=G0ICtrlRead ($input?)
Stoperator=GUICtrlRead ($combo)
_mathWithfinswers ($firstium, $secondium, Soperator)

The revised script appears as follows:

Code

Chapter 9 Example 6

1 #include «<GUIConstantsEx.aud>

2 T #include <WindowsConstants.au3>

3 #include <calc.au3>

4

5 SgquiWidth=300 ; the width of our GUI

[sgquiHeight=300 ; the height of our GUI

7

a SgquiBtnWidth=75 ; the width of our button
9 $gquiBtnHeight=50 ; the heighr of our button
10

11 £inputWidth=150

12 finputHeight=30

13

14 sbuttonTop=($guilHeight/2) - ($guiBtnHeight/2)
15 tbhuttonleft=($gquiWidth/2) - ($guiBtnWidth,/2)
16 sinputleft=(sguiWidth/2) - ($inputWidcth/2}

17 SinputTop= ((%guiHeight/2) - ($guiBtnHeight/2))-(($inputHeight#*2)+10}
18 sinput2Top=;finputTop+ (finputHeight+10)

19

20

21 scomboWidth=50

22 tcomboHeigh=30

23 Scomboleft=5inputleft- (fcomboWidth+10)

24 ScomboTop=(($inputTop+éinput2Top) / 2)

25

28 GUIcreate ("Test GUI™, $guiWidth, fguiHeight) ; using our variables to set height s width
27 GUISetState (BSW_SHOW)

; on the following line we arc using some math and some variavles to center the button by taking into account the
; width and height of the GUI and the button

k3 B3
[T}
—0

30 tbutton = GUICtrlCreateButton ("Push ME", sbuttonleft, $buttonlop, $guiBtnWidch, sguiBtnHeight)
31 $input=GUICtrlCreatelnput ("", $inputleft, $inputTop, $inputWidch, $inpucHeight)

32 Sinput2=GUICtrlCreatelnput ("", finputleft, $input2Top, §inputWidth, $inputHeight)
33 scombo=GUICtrlCreateCombo ("0per”, scomboleft, $comboTop, $comboWidth, $comboHeigh)
34 GUICtrlSetData (-1, "+I-[/1*", "+")

35

36 FEUICtriCreateInput (

37 While 1

38 $nMsg = GUIGetMsg()

39 Switch snMsg

40 = case sbutton

41 sfirstNum=GUICtrlRead($input)

42 f£secondfum=GUICtrlBead ($input?)

43 toperator=GUICtrlRead (scombo)

44 — _mathWith&nswers ($firstHum, $secondNum, foperator)

45 (= Case #GUI_EVENT CILOSE

44 Exit

47 e

48 e EndSwitch

49 — WEnd

The function in our calc.au3 file from Chapter 7 already includes a message box that will display the
answer. Therefore, we can eliminate the message box we were previously using in this area of the code.
When we run the script we see that we have built a crude calculator:

77| Page
Jayme Fishman, Copyright 2015 all rights reserved

A Test GUI = = (A Test GUI = =

10 10

Answer ﬂ

Push ME

30

OK

The complete code for this example is as follows:

There are many more GUI controls available. They are all detailed in the help file under GUI Control
Creation. By following the example in this chapter you should be able to add them to your scripts with
relative ease.

£ T

REMINDER: Graphical User Interfaces (GUIs sometimes pronounced gooey) allow users to interact
with your programs. Autolt supports a wide variety of controls that can be placed on a GUI such as
inputs, combo dropdowns, buttons, and more. The parameters used when creating a control dictate the
size and position of the control relative to the GUI. When coding GUIs from hand a good practice is to
use variables for your measurements so that you can make significant changes to position of the

controls without recoding all their parameters.

Chapter 10: Introducing KODA - Drag and
Drop Graphical User Interface Tool

In Chapter 9 we explored the creation of GUIs using Autolt functions. We tackled some of the
challenges with layouts (i.e. the relative position of controls we were using to the GUI and each other).
We used math functions to be able to have any desired changes ripple through the GUI and
automatically adjust everything. That foundation will prove useful to Autolt script creation and for other
programming endeavors. In many programming languages it is the only way to create a user interface.
Fortunately, in Autolt there is another way — Koda. Koda is a “forms creation tool” (forms are
sometimes how we refer to user interfaces / GUIs) that allows users to quickly create an interface by

78| Page
Jayme Fishman, Copyright 2015 all rights reserved

dragging and dropping desired elements wherever they want them to be when the script runs. Koda
generates the code for this that you can incorporate into your script. It should install into your SciTE
directory as part of your Autolt install. However, if you do not find it there you download Koda from
http://koda.darkhost.ru/page.php?id=download. Download and install the tool:

Step 1:
Click on the zip file containing the latest release from the site:

@()da Form Designer

Home Latest versions
History _

Latest release version 1.7.3.0 from 2010-07-30:
Features

koda_1.7.3.0.zip {(downloads: 6085) (debug map)
Screenshots

Language files

Download
Credits Language files (new or updated):

Download Version
Dutch 1.7.3.0
Turkish 1.7.3.0

Bug Tracker

Documentation

Language kit (instrumentary to help language creating):

Step 2:
Unzip the file in the directory you wish to contain Koda (preferably the same one that contains SciTE).

79| Page
Jayme Fishman, Copyright 2015 all rights reserved

T . v Koda v Search Koda

(] MName . Date modified Type Size
o Extras T7/2015 15 PM File folder
@ Forms 172015 715 PM File folder
@ Language 172015 715 PM File folder
o Templates 172015 715 PM File folder

FD 73072010 11:19 AM - Application 623 KB
[;j’ fd 772015716 PM XML File 4KB
& history 7/30/2010 11:30 AM - Text Document 39 KB
af_ koda_1.7.3.0 TAT205 71T PM Winip File 1,038 KB
E:fr styles 4/5/2010 1:50 PM XML File 33KB

Step 3:

Double click the FD.exe application to launch Koda. You should see the following:

7. oda FormDesigner E\@\ \E

File Edit Yiew Options Tools Forms Help
I o= Standard | Additional | win32 | Custom|

NE AWM EHm K e B8 8 T
B 3. Controls
Object TreeYiew %] 7 Formi

1 Fom D RS DA I

2. Types of controls

(- [O]x]

......... Form Path

mroml

5. Shows GUI|

elements | 1_ Main GUI

Obje pecto
Fom1 TaFom

B3

| Caption
ClientHeight | 535
Clientwfidth 812
Color clBtnFace

Contexttdenu

Cursor crDetault P
Com e . 3 i g SEEEEE
e gl 4, Configure settings for

E e forms and controls here.

Left 189 o0 e

:ld:r:: Forml

OnCloze

Onb aximize:

Onb inimize:

OrRestore

ParentFarm v

&5 A\ExStyles R

Properties A5yl

1. The main screen has several different menus and panels. We will focus on the five main areas

where we will do most of the work.
2. The main GUIl area. This is the GUI to which you can add controls. It is resizable. To resize the
GUI simply use your mouse on any edge and hold down the left mouse key while dragging.

80|Page
Jayme Fishman, Copyright 2015 all rights reserved

Contrast this approach with what you would have to do when using the GUICreate function we
covered earlier (i.e. supply the exact dimensions and then use code to update them).

3. Atthe top of the screen are several tabs that group different types of GUI controls. You can click
through the different tabs to explore the groupings.

4. Beneath the tabs that group the controls are the controls themselves. You can hover over them
with your mouse to see their names. You should observe that they are the same types of
controls available from the standard functions within Autolt. Adding a control is as simple as
clicking on it and “drawing” it on the GUI by holding down your left mouse button and moving
the mouse to get the desired size and shape. You can always resize after the initial control
creation in a similar fashion to resizing the GUI.

5. The fourth area is the object inspector. It is where you provide additional details that impact
the appearance and behavior of the GUI and controls. For example, you may have observed
that when Koda opened the default name of the GUI that appeared at the top in the blue bar
was “Form1”. What if you wanted it to say something more descriptive like “My First
Application v1.0”? Koda makes this task simple. You would simply set the caption property of
the Object Inspector to your desired text and watch it appear on your form as you enter it.

File Edit Wiew Options Tools Forms Help

= Wi E; Standard |.-'1'-.|:||:Iiti|:|na| || Wind2 || Eustu:um|

= N B AR m K e 5 E & [

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh [x] | I, My First Application v 1.0
Fl:lrm‘l T'&Furm ..

Caphion My First Application 1.0 =g B © 00000000000 DN Ll
ClientHeight |595 N N

Clientiwfidth 812 I .

Color cBtnFace LM DD e N
Contesthd enu s o
Curgor crDefault D R S
Enabled True |
EH Fant [TFaont) D R S
Height E29 D R S
Hirt D R S

'\ Properties A Styles fExStyles / LIl

Now that we understand the basic areas of Koda let’s recreate our calculator GUI from Chapter 9 and
compare the effort.

Step 1: Fire up Koda and resize the default form to 300 width x 300 height. This can also be done with
the object inspector:

8l |Page
Jayme Fishman, Copyright 2015 all rights reserved

x| ™ Form1 |Z| |E| [5__<|

Farm1 TAFarm i

ﬂEaptinn Fiarm1 O
ClientHeight | 300 : B - e
Clientsfidth | 300 _ ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Calor clBtnFace e .
Cantexthdenu Lo IDUTRR Ll
Cursar crD efault O
Enabled True O
E Fant (TFart] I
Height 734 I
Hint O
lcan [Maone] i
Left 198 O
b erig O
Neme e IR R EE L LT L |
OnClase |
Orbd aximize i
Onbinmie S EET TR T PR R I T PP
MNP askara

Step 2:

Let’s create our first control — the button that was centered vertically and horizontally in our calculator.
To do this we make sure the standard control tab is activated and select the input control from that
group. Then we need to select the button icon.

Standard | Additional | Win32 | Custom| =

NFAMEw® o @Y T

Then we drag our mouse with the left hand button pressed to draw it onto the GUI. Don’t worry about
its dimensions or placement. We can correct all that with the object inspector. We want the button to
be centered vertically and horizontally just like the one we created in Chapter 9. Do you remember how
we did that? We manually calculated the left and top positions relative to the height and width of the
GUI. To do that we had to also factor in the height and width of the button itself:

ShuttonTop= (SguiHeight/2) - (SguiBtnHeight/2)
SbhuttonLeft=(SguiWidth/2) - (SguiBtnWidth/2)

Then we had to find the horizontal and vertical centers of the GUI position the button in the middle by
dividing the height and width of the button in half and subtracting it from the GUI center points.

SbhuttonTop= (SguiHeight/2) - (SguiBtnHeight/2)
ShuttonLeft=(SguiWidth/2) - (SguiBtnWidth/2]

82|Page
Jayme Fishman, Copyright 2015 all rights reserved

Whew, that was a lot of work! In Koda it is much easier. Before we center It we need to set the
button’s width, height, name, and “caption” (i.e. the text it will display):

F

button TAButton

| Caption Puzh ME
Color clBtnFace
Contexthdenu
Curzor ciDefault
Enabled True

Font [TFaont]
Height 0 e
Hirit
Huatkey [Maone]
Lett 104
Marme button e
OnClick
Picture [Maone]

Rezizing [Ciockyfidth DockE
TabOrder 1
Top 43
izible True
Width Fia]

'\ Properties 4 Styles fE<Styles [I

|

Now that we have the correct properties for our button we need to center it. To do that simply right
click on the button control we will see an option called “align”. The submenu choices from align are
horizontal and vertical. We will do both:

e Cut Chrl+y
—:'j Copy ChrH-C
G|l center Horizontally in Window
[Center vertically in window k
X Delete

I select Al Chrl+A
"4, Tab Order Crrl+T
= Control 3

The result is perfect placement of our button control with just a few mouse clicks:

83|Page
Jayme Fishman, Copyright 2015 all rights reserved

Step 3:

With our “anchor” control in place (i.e. the control that will dictate the position of our other controls
because we coded them relative to the button’s position in Chapter 9 and for no other reason —we
don’t have to do it this way) we can start to add the input and combo controls. Once again we will
navigate to the standard tab grouping in Koda. However, this time we will select the input control:

T oda FormDesigner

File Edit Yew Options Tools Forms Help

0 = W ﬂ; Standard |.-i‘-.|:||:|iti|:|nal | Win3 ustom |

= Qam‘%ﬁ@%m

Once we select the control we will create it on the GUI by using a dragging motion on the GUI with left
mouse button depressed. Again, the exact size and shape does not matter because we will handle that
through the object explorer. Go to the object explorer and set the input box to the same width and
height it was in our calculator example. Then make sure the name of the control is the same (i.e. input
... you don’t need the “S” in the object explorer — Koda will add that for you automatically. Next, make
sure the input box is blank by deleting the text in the “text” section. Finally, use the approach to center
the control by right clicking on it and selecting the horizontal center.

84 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Object Inspector x| |:|@”g|

input TAlrput A SRS S
Color Tdindom JINR R
o S VS BS3iTiiiigiiciiiiy:
Enabled True e :::::::::I IZZZZZZZZZ
H Font (Fartl o M0 A E—EE
Height e i
Hirt i
Left 77 i
MasLength 0 By
Name i i T
O = i
E Resizing [DockHeight] i
TabDider D0 i
Teut s
Top 48 i
el vl R
Visible True i
width 150 e

A few clicks voila!

The next step is to position the first input control vertically to match our example in Chapter 9. You may
recall that we previously set the vertical position of this control with code:

SinputTeop= ((SguiHeight/2)- (SguiBtnHeight/2)) - (SinputHeight*2)+10)

85| Page
Jayme Fishman, Copyright 2015 all rights reserved

The code set the top most position of the input control to that of the button less 2 x 30 (the height of
the input control) + 10 for a total of 70. If we click on the button control in Koda we can see that the top
value is set to 125. 125 —-70 =55. Therefore, the topmost position of our first input control should be
55 which we will set in the object explorer.

Step 4:

Now let’s add the second input control. We need to follow the exact same steps we performed in Step 3
with two exceptions: (1) the name of the this input control will be “input2” and the topmost position will
be 95. How did we get 95? In Chapter 9 we used the following code:

SinputZ2Top=5%inputTop+ (finputHeight+10

That code sets the top of the second input control the top of the first input control + 40 (30 for the
height and another 10 for separation between the two).

Step 5:

We are almost done. The final step before we wire this GUI to our program is to create our combo box.
Once again we go to the general tab grouping for controls but this time we click on the combobox icon:

Standard | Additional | Win32 | Custom

nE AR E w R o 5 e [

Next we bring our mouse pointer over to the GUI and create the control by dragging its approximate
shape and position. Then we make sure the combo box control is selected and we use the object
explorer to sets its shape, size, and position. In this case, we will also add the values we want to appear
in the drop down when a user interacts with the control. A quick review of the code we used in Chapter
9 gives us all the information we need to configure this last control:

Foombolidch=50

FcomboHeigh=30

gocomboleft=5inputleft- (§combaolWidth+10
FoomboTop finputTop+5inputaTop) /2

The left position of the combo control is the left position of the input control less 60 (the combo control
width + 10). If we click on one of the input controls we can see the left position is 77 in the Koda object
explorer. Therefore, the left position of the combo control will be 77-60=17. The top position of the
control is sum of the top positions for our two input controls divided by two. We know from above
those two values were 55 and 95 respectively. Those add up to 150. Half of 150 is 75.

8 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Object Inspector
TACarmbio

combo

Contexttdenu
Curzor crllefault
Enabled True
Fant [TFont]
Height 30
Hint
Itemnlndex]
[temsz [TShings]
Left 17 g
Hame combo e
OnChange
Rezizing [DrackHeight]
TabOrder 3
Text combo
Top Fi=]
Wizible True
WIdth EI:I
q"-,F'ru:uperties ﬁlSt_l,lles J-{LE :-:St_l,lles,-'r

Now that we have configured the size, shape, and placement of the combo control we need to set its
values. To do this we need to use a feature in the object explorer that we have not encountered to this
point ... “Items”. If you click on the value next to items in the object explorer you should see a window
pop up with title of String List Editor that lets you add a series of strings. These are the values a user will
see in the drop down when they activate the control.

Jayme Fishman, Copyright 2015 all rights reserved

87| Page

combio

Object Inspector

TACombo

Color clindow
Contesttd enu
Curzar ciDefault
Enabled Tiue
Fant (TFont) I
Height a0 |
Hint |
Itermlndex 1] &
I ltems [TStrings)
Left 17
I arne combio
OnChange
Reszizing [DockHeight]
TabOrder 3
Text combo
Top h
Vizible True
Width a0

_.‘-,F'rcq:uarties,ﬂfﬁtyles;‘flE:-:St_l,lles;Ir

E3 . Form1

String List Editor

0 lines

Simply type in the arithmetic operators we used in Chapter followed by a hard return and you see the

following.

String List

Editor

4 lines

+

¢

®

Ok

If you want to see how this will look when you run it you can always select the run command from the

Koda menu.

Jayme Fishman, Copyright 2015 all rights reserved

88| Page

T oda FormDesigner

Fil= Edit “ew OptionsgdTools Forms Help
‘ Q = 5 G | Standard | Addiional | Win32 | Custom|
=N N B AR EH R e S E & [

When you do that you should see running version of the GUI. It won’t do anything yet — but will look
like what a user would see when they run your program. You may notice that my GUI does not say the
name of the control in the box. That is because | took the extra step of deleting the text value for the
combo box control in the object explorer. Try deleting it yourself and then run the GUI afterward to see
if yours looks the same.

Code

Chapter 10 KodaCalculatorGULkxf (This is the GUI file created by Koda that you can use to see if
yours came out the same.

%] A Form1

Object Inspector

combo

TACombo

Color

chfindow

Contexthd enu

Cursar

crD efault

Enabled

True

Font

[TFaont]

Height

a0

| Input

Hint

Itemlndes

1]

Items
Left

[TStrings]
17

M ame

combo

OnChange

Rezizing

[DiozkHeight]

TabOrder

3

Text

Top

[l

izible

*fidth

50

Push ME

Froperties A Styles AEShyles /

Step 6:

Wiring the Koda GUI to our application: so how do we get what we create in Koda into a script that we
can edit and run as part of our program? Koda has a button that we can use to generate the code which
we can then cut and paste in SciTE or our favorite text editor. If you press the button you will see a
window popup that allows you to select all of the Koda code or just portions for copying and pasting.

Jayme Fishman, Copyright 2015 all rights reserved

89| Page

'
— NOTE : You may want to select only a portion of the code if you were toggling back and forth
making minor adjustments rather than selecting the entire Koda generated text. This is especially true if
you have made any modifications to what Koda generated in your script because any such modifications
would be overwritten if you perform a wholesale copy and paste.

Press the code button. You will see a window open with the title “Code”.

T oda FormDesigner

‘ O H % Standard |.-’-'-.'ti0na| || Win32 || Eu$t0m|
E==7 =H g -_——
o’ N 5 AW 2 m kK @ & § 7
bje peCEo ode m|
w
combo [Alambe ftinclude <ButtonConztantz. au3y A
Coalor chwfindow finclude <ComboConstants. auds: =
finclude <EditConstants. au:
Contesthdenu ftinclude <GUIConstantsE = a3
Cursor crDefault finciude <windowsConstants, au3s
Enabled True HReqgion g START Koda GUI section ### Form=c:\documentz and zettingshadministratarsmy docun
Font [TFant] $Form1_1 = GUICreate"Form1", 301, 301, 188, 121)
Height a0 $input = GUICHICreatelnput"™', 77, 55, 150, 21]
Hint $button = GUICHICreatel utton]""Push ME™, 113, 125, 75, &)
n $Input! = GLICHICreatelnputl"Input1”. 77, 95, 150, 21)
Itemndex 0 i $combo = GUICHICreateCombo(™", 17, 75, 50, 30, BtOR[$CES_DROPDOWMN $CEBS_AUTOHSCROLL
I items (TStingsl = GUICHISetDatal-1. "+H4*]
Left 17 GLISetState@EEW_SHOW)
Name combo HE ndRegion #88 EMD Koda GUI zection #H#
OnChange while 1 LS
Resizing [DockHeight] $ntlzg = GUIGetMzqg(]
T abOrder 3 Switch $ntdzg
Tent Caze $GUI_EVEMT_CLOSE
E it A
Top 7h P | 3 —
Yizible True — —
wiidth 50
== Copy to dipbaard -
Y Properties {5 tples (E xotyles |
The bottom of the code window has a button that says “Copy to clipboard”. Press that button then
open SciTE and paste the code.
90 |Page

Jayme Fishman, Copyright 2015 all rights reserved

1 [F #include <ButtonConztants.auds

Z #include <ComboConstants.aui>

3 #include <EditConstants.aud>

4 #include <GUIConsStantsEx.audx

5 — ginclude <WindowsConstants.auds

] [F] #Region ### STLRT Koda GUI section ### Form=c:‘documents and settingsadministrator)my
7 gForml 1 GUICreate|"Forml™, 301, 301, 153, 121

g finput GUICtrlCreatelnput (™", 77, 55, 150, Z1

9 Fhutton GUICCrlCreateButton("Fush ME™, 113, 125, 75, 50
10 gInputs GUICtrlCreateInput(™", 77, 95, 150, Z1

11 Zconbo GUICtrlCreateCombo (", 17, 75, 50, 30, BitOR(5CE5_DROPDOWN,$CES AUTOHICROLL
1z GUICtrlSetDatal-1, "+|-|/|*"

13 GUISetState ([E0_=HOW

14 — #EndFegion ### END Eoda GUI section ###

15

16 While 1

17 snMsag GUIGetMag

18 Switch snM=g

19 Case §GUI_EVENT CLOSE

20 Exit

z1

22 End3witch

23 WEnd

Notice that the code we pasted has several sections. First, there are the includes at the top. Those have
been automatically generated for us by Koda based on the Ul elements we selected to be part of our
GUI. Next there is a block of GUI code that start and end with some comments using the hash sign (#).
That is our GUL. That code is similar to what we created by hand except Koda managed the placement
of the controls based on our settings in the object explorer instead of using variables. Finally, there is a
while loop at the bottom to listen for GUI events. You may also note that the exit event for
SGUI_EVENT_CLOSE has also been created automatically. Save the new script as KodaCalculator.au3.

There are only two remaining differences from the calculator example we created in Chapter 9. First,
we need to include “calc.au3” at the top as shown below. Make sure it is in the same directory as where
you are saving this new script. Next, open the original calculator code from Chapter 9, copy the entire
while loop, and replace the while loop for KodaCalculator.au3 with the copied while loop. The modified
code appears below.

91| Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 10 Example 1

1 #include <ButtonConstants.auss

Z #include <ComboConstants.auds

3 #include <EditConstants.aud>

4 #include <GUIConstantsEx.auds

5 #include <WMindowsConstants.audr

G

7 #include <calc.aud> ‘

g

9 [F] #Region ### START Foda GUI section ### Form=c:‘documents and settings)administratorimy c
10 $Forml 1 GUICreate("Forml™, 301, 301, 185, 121

11 finput GUICtrlCreateInput(™™, 77, 55, 150, Z1

12 Fhutrton GUICtrlCreateButtonPush ME™, 113, 125, 75, 50

13 g Inputs GUICtrlCreateInput (™™, 77, 95, 150, 21

14 Foombo GUICtrlCreateCombo (™™, 17, 75, 50, 30, BitOR($CES_DROPDOWH, $CES AUTOH3CROLL
15 GUICtrlSetDatal-1, "+|-|/|%"

16 GUISetdtate @50 _SHOW

17 — #EndRegion ### END Koda GUI section ### . .

L Entire section
20 SEUICtrlCreateInput { {_‘;{‘_}p|ed fr{‘_)m Chapter
21 Mhile 1 *

22 snMag GUIGetMsy E}_

23 Switch snflsg

24 = case Shutton

25 ffirstNun=GUICtrlRead 5 input

26 fsecondfun=GUICtrlRead | §inputs

27 foperator=GUICtrlRead |sconbo

28 b _mathllithanswers(ffirsthium, f secondiun, foperator

29 =l Case sGUI_EVENT CLO3E

30 Exit

31 —

32 i End3witch

33 — WEnd

If you run this code you should see the calculator that we created in Chapter 9. Of course, the main
difference is that we create the GUI using Koda instead of coding it by hand.

-.O;

REMINDER: Koda is a tool that can be used to create GUIs for your Autolt scripts. One advantage
to using Koda is that you can drag and drop your components onto your GUI with a visual interface that

provides quick access to repositioning and sizing of controls. It also contains several features that save
time such as automatic vertical and horizontal centering. Controls named in the Koda object explorer do
not require a “$” character. The “$” will be generated automatically by Koda along with the rest of the
GUI code. Koda generated code can be copied and pasted into your script.

92| Page
Jayme Fishman, Copyright 2015 all rights reserved

Chapter 11: What’s in a name? String
management.

In Chapter 1 we learned about various data types including strings — text that appears within quotation
marks. You may find that when you write your scripts you may need to manipulate a string. We have
already seen examples of concatenating two strings together with the ampersand “&” operator but
what if you wanted to replace certain words? Trim off portions of a phrase or sentence? Add
delimiters, etc.? All of those things (and more) are possible with Autolt’s built in string functions. We
will examine several of the most popular functions — the rest can be found in the Autolt help file.

StringInStr

Searching for text within a string is a common task. Autolt’s StiringinStr function does just that. As the
name would suggest it searches for a string (i.e. a substring) within a string. If successful, it will return
the position of the substring. The function, as documented by the Autolt help file, appears below.

StringInStr

Checks if a string contains a given substring.

StringInStr ("string™, "substring™ [, casesense = 0 [, occurrence = 1 [, start = 1 [,
count]]1] }

Parameters

string The string to evaluate.
substring The substring to search for.

[optional] Flag to indicate if the operations should be case sensitive.
§STR_MOCASESEMSE (0] = not case sensitive, using the user's locale (default)
casesense %STR_CASESEMSE (1) = case sensitive
S5TR_MNOCASESEMSEBASIC (2) = not case sensitive, using a basic/faster comparison
Constants are defined in StringConstants.au3

[optional] Which occurrence of the substring to find in the string. Use a negative occurrence to search

occurrence from the right side. The default value is 1 (finds first occurrence).
start [optional] The starting position of the search.
count [optional] The number of characters to search. This effectively limits the search to a portion of the full

string. See remarks.

It has several parameters starting with the string that will be searched. The only other mandatory
parameter is the substring that you wish to find. You can also feed the function some optional
parameters that dictate whether or not the search is case sensitive, which occurrence you are searching
for (in the case where there is more than one), where to start the search (if you don’t want to start at

93| Page
Jayme Fishman, Copyright 2015 all rights reserved

the beginning of the string, and a count should you desire to limit the number of characters searched
within the string.

Let’s take a look at this function in action. If we create a simple string and then search for a term we can
store the result in a variable and display it in a message box.

Code
Chapter 11 Example 1

include <MsgBoxConstants.an3s>

fmyString "The gquick brown fox jumped over the log”
SfoxPoaition StringInStr (fmyString, "fox"

MagBox (sMB_OK, "", sfoxPosition

W= La ka2

When we run the code we will see a message box that displays the position of the substring “fox” -
which starts at the 17" character of $myString.

17

What would happen if we switched the substring that we are searching for to “donkey”? The message
box would show us a “0” because that is what the function returns when the search fails.

StringLen

What if we wanted to know how many characters were in our initial string (i.e. SmyString)? How would
we figure that out? As you may have guessed, there is another function for that. The StringLen function
will return the length of a given string. The function has only one parameter — the string that you wish
to measure.

StringLen

Returns the number of characters in a string.

Stringlen ("string™)
Parameters
string The string to evaluate.

Let’s revise the code we used to search our string and measure it instead.

94 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Chapter 11 Example 2

#include «<MsgBoxConstants.aud>

tmyString = "The quick brown fox jumped over the log™
tmyStringlen = Stringlen(fmyString)

Magbox (sMB OK, "™, fmyStringlen)

LA W= La R

oK

If we do that we can see that our original string was 39 characters in length. The string length can be
very powerful when used in conjunction with other string functions. More on that in a moment.

StringReplace

String replace allows you to search a given string for a substring and replace it with another string. You
can optionally dictate how many replacements to make and whether or not your search is case
sensitive.

StringReplace

Replaces substrings in a string.

StringReplace ["string™, "searchstring/start”, "replacestring”™ [, occurrence = 0 [,
caseszense = 0]])

Parameters

string The string to evaluate.
searchstring/start | The substring to search for or the character position to start the replacement.
replacestring The replacement string.

[optional] The number of times to replace the searchstring. Use a negative occurrence to replace from
ocCuUrrence the right side.
0 = all searchstrings will be replaced (default)

[optional] Flag to indicate if the operations should be case sensitive.
§STR_MOCASESENSE (0) = not case sensitive, using the user's locale (default)
Casesense §5TR_CASESEMSE (1) = case sensitive
§STR_MNOCASESENSEBASIC (2) = not case sensitive, using a basic/faster comparison
Constants are defined in StringConstants.au3

If we look at our starting string we can change fox to dog using this function.

95| Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 11 Example 3

#include «<MsgBoxConstants.and>
smyString "The guick brown fox jumped over the log™
stnewString=5StringReplace (smyString, "fox™, "dog™

= L R

The quick brown dog jumped over the log

oK

There are many practical uses for this function including instances in which you desire to change a data
file or “cleanse” it. Example: a work colleague wants to upload his or her pipe delimited file (i.e. a file
where the values are separated by pipes “|”) to a website. However, the website only accepts comma
separated files. What could you do? You could read the file and use this function to convert the pipes
to commas.

]
NOTE: We will cover basic file and directory management functions in the following chapter.

StringSplit

String split is another powerful function that will break a string into substrings based on a given
delimiter and return the substrings in an array. The function has two mandatory arguments: the string
that you would like to split and the text you are using to split it (i.e. the delimiter). There is also an
optional flag parameter that allows you to dictate the behavior of the split. For example, the default
behavior of the function returns an array. By default, the first element of the array contains a value
representing the number of strings returned. The implication is that your substrings start at the index of
1 instead of 0 since 0 is occupied by the count. You can change that in the flag parameter with a value
of 2 and the count will be disabled as the first element giving you a zero based index for your returned
strings.

@
NOTE: The optional flag parameter says “...add multiple flag values together if required:”
Therefore, if you wanted to use the SSTR_ENTIRESPLIT and SSTR_NOCOUNT flags together you would
set the value of the flag parameter to 3 (1) + (2).

9% |Page
Jayme Fishman, Copyright 2015 all rights reserved

StringSplit

Splits up a string into substrings depending on the given delimiters.

StringSplit ["string"™, "delimiters" [, flag = 0])
Parameters
string The string to evaluate.
delimiters One or more characters to use as delimiters (case sensitive].

[optional] Changes how the string split works, add multiple flag values together if required:
$STR_CHRSPLIT (0) = each character in the delimiter string will mark where to split the string
(default)
flag $STR_EMTIRESPLIT (1) = entire delimiter string is needed to mark the split
$STR_NOCOUNT (2) = disable the return count in the first element - effectively makes the
array 0-based (must use UBound() to get the size of the array in this case).
Constants are defined in StringConstants.au3

Let’s create our own example by storing a list of names separated by commas (i.e. a string) in a variable
called Snames. Then we will use StringSplit to break the names into an array using the comma delimiter.
Finally, we will use an include to extend Autolts array functionality so that we can display the results of
the array on our screen with the _ArrayDisplay function (more on that later when we cover user defined
functions or UDFs).

Code

Chapter 11 Example 4

1 #include<Array.and>
2 tnames=" Bob, Jane, Sammy, David, Jonah, Billy, Duke, Lizzie, Greg"”
3 tnamelrray=5StringSplit(fnames, ™, ")
4 _ArrayDisplay($namehArray, "Names Array™)
’ Row ColD
0 9
r % [1] Bob
The first element tells us (4] Jane
the number of [3] Sammy
substrings (in this case [4] David
names) [5] Jonah
\ ’ [€] Billy
[7] Duke
[8] Lizzie
[9] Greg

97 |Page
Jayme Fishman, Copyright 2015 all rights reserved

We can see from the displayed array that our string contained nine names that are now stored in an
array. Why would this be useful? Now we can loop through them in the array with one of our may loop
functions from Chapter 6. For example, we could personalize a message to each person:

Code

Chapter 11 Example 5

1 #include<Array.and>
2 snames=" IB:]:, Jane, Sammy, David, Jonah, Billy, Duke, Lizzie, Greg"
3 fnamelrray=StringSplit ($names, ", "
4 ;_Arrayﬂisplay|‘$nameﬁ.xray, "Names Array") —
5 commented
a for $a=1 to UBound(snameRArray)-1 .
7 T ConsoleWrite (Bcrlfz"This is a special message for"s$namelArray[s$a]sBcrlf out - “-'l].]. be
8 Hext :
= ignored by
. i TOgTraim
- ~ This i3 a special message for Bob p =
Note the for loop starts
at 1 tO E‘].TOid the 0 This is a special message for Jane
i]’ldex that stores the Thisz iz & special message for Sammy
COU.Ht. This is a special message for Dawvid

This is a special message for Jonah

These are the results
The results will
appem- at the bottoul This iz & special message for Lizzie
Of }-’O'I_].l' SCite IDE Thiz iz & specizl message for Greg
(the console)

This i3 a special message for Billy

This is a special message for Duke

StringTrimLeft

As the name would suggest, string trim left allows you to “trim” (i.e. chop off) a portion of a given string
by providing a given number of character to trim from the left hand side. It has only two parameters
both of which are mandatory. They are the string to trim, and the count which will dictate the number
of characters being trimmed. A successful operation will return the new string. If you trim too many
(i.e. go out of bounds by trimming more characters than there are) an empty string will be returned.

98| Page
Jayme Fishman, Copyright 2015 all rights reserved

StringTrimLeft

Trims a number of characters from the left hand side of a string.

StringTrimLeft ("string™, count)

Parameters

string The string to evaluate.

count The number of characters to trim.

Return Value

Returns the string trimmed by count characters from the left.

Remarks

If count is out-of-bounds, an empty string is returned.

StringTrimLeft($str, $n) is functionally equivalent to StringRight($str, StringLen($str) - §n)

This function is particularly useful when used in conjunction with StringInStr and StringlLen. Let’s
reexamine our original string "The quick brown fox jumped over the log". We know that the length of
the string is 39. We also know that fox appears at position 17 and is three characters long. What would
we need to do in order to trim off everything up to the word “jumped”?

Code
Chapter 11 Example 6

#include <MsgBoxConstants.and>
smyString = "The quick brown fox jumped over the log”
tfoxPosition = StringInStr(fmyString, "fox"™)

LA LA kD

Msgbox (SMB OK, "7, $trimmedString)

jurnped over the log

StrimmedString=StringTrimleft (smyString, $foxPoaition+3)

We would need to create a new variable to store the trimmed string returned from the StringTrimLeft
function and trim the number of characters returned by our initial search + 3 (to cover the “0”, “x” and
whitespace. Is there another way where we would not have to manually count the number of

Jayme Fishman, Copyright 2015 all rights reserved

99 |Page

characters to get our desired result? How about if we stored the search term in a variable and
measured its length with a function? Then we could add that value to the value returned from our
search. It would accomplish the same thing. It might look something like this:

Code

Chapter 11 Example 7

#include <MsgBoxConstants.and>
tmyString = "The quick brown fox jumped over the log”™
$3earchlerm="fox"

f3earchtermlen=5tringlen ($searchTerm

tfoxPosition = StringIndtr(fmyString, $searchlerm)
SttrimmedString=StringTrimleft ($myString, sfoxPosition+Ssearchtermlen)
MagBox (sMB OK, ™", $trimmedString)

e = I BT R U S I

jurnped over the log

You can start to envision different ways to use the functions with another. Now what would you do if
you wanted to trim some characters from the right hand side?

StringTrimRight
StringTrimRight works the same way as StringTrimLeft but the trimming is calculated from the right side
instead of the left:

StringTrimRight
Trims a number of characters from the right hand side of a string.

StringTrimRight ("string", count }

We know we want to chop off the word “log” from the right side and that the word log is three
characters. It might look something like this:

100 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 11 Example 8

#include <MsgBoxConstants.aunds>

tmyString = "The guick brown fox jumped owver the log™
tnewString=StringTrimRight (fmyString, 3)

MagBox ($MB 0K, ™", Snew3tring)

[U S

The quick brown fox jurmped over the

StringLeft and StringRight
¢

— NOTE: StringLeft is not the same as StringTrimLeft. It is a different function that we have not
covered. Stringleft returns the leftmost portion of a string based on the number of characters
provided. It has a counterpart function StringRight that does the same thing but from the right hand
side of the string (which is also different from StringTrimRight).

The functions are different from their trim counterparts but can still be used for that purpose (as well as
other purposes). For example, if you want to trim from the right instead of the left while you could use
StringTrimRight the Autolt help file points out you could use also use StringLeft and do something like
this: StringLeft(Sstr, StringLen(Sstr) - Sn) where Sstr is the string to be evaluated and $n is the number of
characters to from the left position to return as a new string.

What if we want to chop off the word log again from the end of our sentence using these functions
instead of StringTrimRight? Let’s try it:

101 |Page
Jayme Fishman, Copyright 2015 all rights reserved

mk:@MSITStore:C:/Program%20Files%20(x86)/AutoIt3/AutoIt.chm::/html/functions/StringLeft.htm
mk:@MSITStore:C:/Program%20Files%20(x86)/AutoIt3/AutoIt.chm::/html/functions/StringLen.htm

Code

Chapter 11 Example 9

1 #include <MsgBoxConstants.auds

2 fmyString "The guick brown fox jumped owver the log”

3 ftrimmedString=Stringleft (fmyString, Stringlen (fmyString) -3

4 MagBox (sMB_OK, "", strimmedString H

The quick brown fox jurmnped over the

OK

You can see that in this example we have successfully returned a new string without the word “log.

The simplified approach did not worry about creating a search term and measuring its length because in
this case it was all very manageable. The more complex examples were provided because it won’t
always be that simple. You may need to create several measurements and user a variety of functions to
create your desired outcome.

’-@, REMINDER: You may have need in your coding to manipulate strings. There are many powerful
string functions built into Autolt that can be used to do things like measure, search, split, and trim

strings. You may need to use several functions in concert to obtain your desired result.

Chapter 12: Files and Directories

It won’t be long until you’ll have a need to create files, read them, move them etc. You will also need to
understand how to work with the directories where the files are stored. As in past chapters we will
focus on some of the more popular functions to get you up and running with files and directories.

Files

File creation - FileOpen / FileWrite / FileClose

We have already created a slew of variables that we used to store different pieces of data within our
scripts. But that information is stored in the program with no way to “get it out”. Moreover, when the
program closes the information is lost. One way to produce externally accessible information and save it
on a more permanent basis is to create a file and write the information to it. There are three steps to
creating a file with Autolt. First, we have to “open” a new file with the FileOpen function (which can
also be used to open an existing file). FileOpen has two parameters: the filename (which should include

102 |Page
Jayme Fishman, Copyright 2015 all rights reserved

the path to our file) and optional parameter of “mode” used to dictate certain options such as whether
or not we are overwriting data in a file, appending, etc.

One line of code will create our new file:

Code
Chapter 12 Example 1

2 tmyFile FileOpen (@BScriptDire™\myfile.txt™, 2

1. Thisis a macro. We will cover macros in the next chapter. For now we need to understand that
this macro is a shortcut that provides the path to the directory in which our script is located. If
we did not have that shortcut we would have to use the full path such as “c:\documents and
settings\user\files\autoit\myfile.txt”. Another benefit is that our program may be run on other
people’s machines that have different folders and directories. If their folders are different your
program may not work. Using the macro ensures that whatever the path — your script will find
it. Note the use of the ampersand and the backslash before the filename. That adds the
backslash and the file name to the script path.

2. Thisis what we are calling the file that we are creating. In this case “myfile.txt”.

This is the optional mode parameter. In this case we are using 2 which signals to the function
that we would like to overwrite whatever is in the file and erase everything.

FileOpen returns the “handle” that we store in our SmyFile variable when that line of code is executed.
You can use that handle for subsequent file functions.

Now we need to add some data to our file. If we pull up our example from chapter 11 we can use our
go to string: "The quick brown fox jumped over the log". That string was stored in a variable. Let’s take
that variable and write it to our newly created file using the FileWrite function. FileWrite has two
parameters the filename or filehandle.

103 |Page
Jayme Fishman, Copyright 2015 all rights reserved

FileWrite

FileWrite

Write text/data to the end of a previously opened file.

FileWrite (["filehandle/filename", "text/datca™)}

Parameters

The handle of a file, as returned by a previous call to FileQpen(). Alternatively, you may

filehandle/filename use a string filename as the first parameter.

The text/data to write to the file. The text is written as is - no @CR or @LF characters
are added. See remark for data type.

Code
Chapter 12 Example 2

text/data

2 smyFile FileOpen (@ScriptDirs™\myfile.txt™, 2
3 fmyString "The guick brown fox jumped over the log"
4 FileWrite (smyFile, $myString

In the above example we called the FileWrite function with the handle for the filename we had created
in the first line of code — which means we are writing to the file called myfile.txt located in the same
directory as our script. The second parameter dictates what we are writing — in this case our favorite
string about the fox and log. At this point, if you searched for the file in the directory you would see it
but it would appear to be blank. Why? Because before the file can be used we must close it. If it is still
open it won’t be useable. To close it we call the function FileClose which has only one parameter
Filename/handle.

tmyFile FileOpen(@ScriptDirs™\myfile.txt™, 2
tmyString "The gquick brown fox jumped over the log"
FileWrite(smyFile, smyString

FileCloae (smyFile

W= L Ra

This last line of code closes the file and makes it available for use. Now if you go to your script directory
you should see the file.

|| myfile

WYYYY,

If you were to open the file you should see the following:

104 |Page
Jayme Fishman, Copyright 2015 all rights reserved

File Edit Format View Help

rl'he quick brown fox jumped over the log

Just like that with a few lines of code we have created a file. That was a very simplistic example. What
if we wanted to create a file of the personalized greetings we generated to the console when we
explored the StringSplit function in the previous chapter. What would that look like?

Code

Chapter 12 Example 3
tmyFile = FileOpen(@ScriptDires™\myfile.txt", 2)

tnames=" Bob, Jane, Sammy, David, Joneh, Billy, Duke, Lizzie, Greg”
tnamelrray=StringSplit($names, ™, ") w

for $a=1 to UBound ($namelrray)-1
FileWrite (¢myFile, Bcrlf:"This is a speclal message for":fnamelrray|sa]szfcrlf)

—

Next
FileCloze (smyFile)

0 =1 o Lo Lo R

1. We create our file the same we did in the prior example. The optional mode parameter will
wipe the previous contents.

2. We use the string containing our names from Chapter 11.

3. We break the names into an array as we did in Chapter 11 using StringSplit.

4. This time, instead of writing the personalized greeting to the console that we could view in our
SciTE editor we are writing them to our file.

5. After the for loop ends the script will continue. The next thing we do is close the file.

Now when we re-open our myfile.txt file we will see the following:

105|Page
Jayme Fishman, Copyright 2015 all rights reserved

File Edit | Format | View Help

This is a special message

This i special message
This i special message
This i special message
This i special message
This i special message
This i special message

This i special message

This i special message

This example was a bit more powerful because we were able to use a for loop to produce a larger file. In
addition, our file contains nine rows with different content on each row.

FileRead

To this point we have successfully created a file, written data to it, and “closed” it so that we could
access it and review its contents. That last step, where we manually found the file and opened it can
also be automated. FileRead is an Autolt function that, as the name suggests, allows us to
programmatically read a file. It has one mandatory parameter for the filename / handle. It also has an
optional parameter if you want to limit the number of characters to read. If only we had a file to test
this on ... oh wait, we do, we just created one.

Code

Chapter 12 Example 4

1 #include <MsgBoxXConstants.eud>
2 £fileIn = FileRead (@ScriptDire™\myfile.txt™)
3 MagBox (sMB 0K, "™, 5fileln)

In the code above we created a variable called Sfileln to store the contents of the file read using the
FileRead function. The file we are reading is the same one we just created. Therefore, when we put the
contents of the $fileln variable into a message box we see the following:

106 |Page
Jayme Fishman, Copyright 2015 all rights reserved

This is a special message for Bob
This is a special message for Jane
This is a special message for Sammy
This is a special message for David
This is a special message for Jonah
This is a special message for Billy
This is a special message for Duke

This is a special message for Lizzie

This is a special message for Greg

@
— NOTE: if you are only interested in reading a single line from the file try FileReadLine instead. It has
a parameter for the filename / handle and an optional parameter for a specific line.

FileCopy

FileCopy is worth mentioning. It allows you to create a copy of a given file. It has three parameters:
source (i.e. the source file you wish to copy), dest (the destination to place the copy) and a flag that
allows you to dictate whether or not the copy will refrain from overwriting, overwrite, and/or create a
path if the path you provided does not exist. A ingle line of code can create a duplicate of our file and
place it on our desktop:

Code

Chapter 12 Example 5

1 FileCopy (BScriptDirz™‘\myfile.txt™, @DesktopDir)

You may notice that this example introduces a second macro — @DesktopDir which is a path to the users
desktop directory. If you run that line of code you will find a copy of the file we created on your
desktop.

é’

w2 REMINDER: we will cover macros in the following chapter.

107 |Page
Jayme Fishman, Copyright 2015 all rights reserved

FileOpenDialog

There is another nifty file function that will open up a browse for file or directory window so a user can

select a given file. It is the FileOpenDialog function. The Autolt help file shows the parameters this
function accepts and their meaning.

FileOpenDialog

Initiates a Open File Dialog.

FileCpenDialog ("title", "init dir"™, "filter"™ [, option=s = 0 [, "default
name” [, hwndll]l)

Parameters

title Title text of the Dialog GUI.

init dir Initial directory selected in the GUI file tree.

filter File type single filter such as "All (**)" or "Text files (*.bxt)" or multiple filter groups such as

"All (**)|Text files (*bt)" (See Remarks).

[optional] Dialog Options: To use more than one option, BitOR. the required values
together.
SFD_FILEMUSTEXIST (1) = File Must Exist (if user types a filename)

SFD_PATHMUSTEXIST (2) = Path Must Exist (if user types a path, ending with a
backslash)

$FO_MULTISELECT (4) = Allow MultiSelect

$FD_PROMPTCREATEMEW (8) = Prompt to Create Mew File (if does not exist)
Constants are defined in FileConstants.au3

options

default name [optional] Suggested file name for the user to open. Default is blank (")

hwnd [optional] The window handle to use as the parent for this dialog.

Instead of hard coding the file that we wanted to read in our previous example we could have allowed a
user to browse for it and select it.

108 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 12 Example 6

Title of the window that will
appear when we select our file.

1 £file = FileOpenDialog("Select File", @ScriptDir, "Text files (*.txt)"

filter: what types of

initial directory to start our file search :
: files to look for

That code will create a new file open dialog box with a title of “Select File” that will default to displaying
the available files in the initial directory we specified — in this case our script directory. The last
parameter is a filter. In our case we are only interested in viewing text files. If you run the code, and
you still have the file we created earlier the chapter in your script directory, you should see the
following:

i folder =~ [@

" MName Date medified Type Size

| myfile _ Text Document 1KB

our file from earlier
Preset to text files thanks to
aur filter

File name: || v| Text files (*.tut) W

Directories

Directories are the folder structures in which files are stored. The standard functions in Autolt allow us
to copy, create, move, remove, and get the size of directories. You might note that there is no option to
rename them. Autolt does not have a separate function for renaming directories so you need to

109 |Page
Jayme Fishman, Copyright 2015 all rights reserved

DirMove (to move a directory) to rename it (the same is true of files which must rely upon FileMove for
file renaming).

DirCreate
The DirCreate function creates a directory and has a single argument for path which will dictate the path
of your new folder. We can create a new directory with a single line of code as follows:

Code

Chapter 12 Example 7

1 DirCreate (EScriptDirs™\new folderi\™)

Now if you look in the directory where your script is located you should see a new folder called “new
folder”.

DirGetSize
The folder is currently empty so we would expect it to have a size of zero. Sure enough, if we use the
function that is exactly what we will see.

Code

Chapter 12 Example 8

1 #include <MsgBoxConstants.auds>
2 tsize=DirGetSize (EScriptDirz"\new folder\™)
3 MagBox ($MB_OK, "™, £3ize)

X

oK

If we wanted to add a file and re-measure the size of the directory we could make a copy of our text file
and place it in the directory as follows:

110 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 12 Example 9

#include <MsgBoxConstants.aund>

FileCopy (@ScriptDirs™umyfile.txt™, @ScriptDirs™\new folder\™)
tsize=DirGetSize (EScriptDirz"\new folder\™)
MagBox (sMB OK, "™, $3ize)

= L R

47

oK

Now the directory has a size of 347 bytes because it contains a copy of the text file that we created
earlier.

Let’s kill two birds with one stone and rename our directory. We know that there is no function for this
so we need to use DirMove. If the source and target destinations are the same we should be able to
rename it without actually changing its location.

Code

1 DirMove (BScriptDirs™\new folder\",@5criptDirz"\new name)", 1}

Chapter 12 Example 10

That single line of code “moved” the directory with a target that contained a new name. If you look in
your script directory you should see that the name of the directory changed. Now if want to undo all
that we can delete the directory with a single line of code.

Code

1 DirRemove (EScriptDirc™\new name’™,1)

Chapter 12 Example 11

Note the use of the optional parameter called “recurse” (you will see it referred by that name in the
Autolt help file). The default behavior of the DirRemove function is to delete a folder only if it is empty.
We placed a copy of our text file in the folder. Therefore, the function will not work unless we pass a
flag saying that we would also like it to delete the folders contents. If you run that code you should see

111 |Page
Jayme Fishman, Copyright 2015 all rights reserved

that the directory is no longer present in your scripts folder. WARNING: be careful with delete functions
— you could wipe out unintended files if you’re not careful.

Drives

Disk management is also part of the same grouping of functions that deal with files and directories.
However, instead of dealing with files and folders these functions address all things disk. For example, if
you wanted to know how much free space you had on your “C:\” drive all you could do the following:

Code
Chapter 12 Example 12

1 #include «<MsgBoxConstants.and>
2 MagBox (sMB OK, "", DriveSpaceFree ("c:\"] |
3

1483747.70703125

The free space is returned as a value in Megabytes.

DriveGetDrive

If you want to create an array of all your drives you could use the DriveGetDrive function. It has a single
parameter for “type” that dictates which drives are returned. You could do everything from ALL to
those that removable, CD ROM, network, etc.

Code
Chapter 12 Example 13

#include<hrray.and>
Sdrivelrray=DriveGetDrive ("ALL"}
_ArrayDiaplay ($drivelrray)

=1 N ks L R

Copy Data & Hdr/Row || Copy Data Only

[3] Run User Func

112 |Page
Jayme Fishman, Copyright 2015 all rights reserved

The above code shows 2 drives (the first element in the array is the number of drives). The two drives
are c: and d: respectively.

®
NOTE: There is a little drive goodie function tucked away under “Misc. Management” in the help file
called “CDTray”. It lets you automatically open and close the CD Drive on your computer with code. The
function has two parameters: the drive and the status. The status can be either “open” or “closed”. Try
it out: CDTray ("drive", "status").

e

"3‘,, REMINDER: We can create files, add content, read, copy, move and delete them all from our
code. We can also perform a handful of similar operations with directories. Finally, we can get
information about disk drives. We also learned that there is no renaming function for files or directories

so we must use FileMove and DirMove respectively to rename files and directories.

Chapter 13: Macros

We have already used some macros in our scripts. In Chapter 6 we were exposed to @CRLF which is the
macro for a hard carriage return. Later we explored @ScriptDir and @DesktopDir as shortcuts for the
paths to our script and desktop directories respectively. There are currently 102 different macros in
the Autolt language. All are preceded by the “@” character to distinguish them from other variables
and all are documented in Macro Reference section of the help file. In addition, they are grouped by
Autoit-related, Directory, System Info, and Time and Date macros. We will examine a handful of the
more popular macros from each grouping.

Autolt-related macros
We have already covered one example of common Autolt-related macros. Specifically, @ScriptDir. The
macro we use to get the directory path of our scripts. Another prominent macro in this category is:

@error

You will see reference to @error throughout the Autolt help file. It obtains the status of the error flag
set by SetError(). Many of the functions used throughout Autolt return values that indicate success or
failure. However, many of them also set the error flag that can be retrieved with this macro. Consider
the example of GUICreate that encountered in Chapter 9. If that function fails it will return “0 if the
window cannot be created and sets the @error flag to 1.” This means that you can check for the
returned value of O or the @error value of 1 to see if the GUI creation failed.

Directory macros
We have already used @DesktopDir to place a copy of a file we created on our desktop using FileCopy.
The following is a complete listing of directory macros from the help file:

113 |Page
Jayme Fishman, Copyright 2015 all rights reserved

@AppDataCommonDir Path to Application Data
@DesktopCommonDir Path to Desktop
@DocumentsCommonDir Path to Documents
@FavoritesCommonDir | Path to Favorites
@ProgramsCommonDir Path to Start Menu's Programs folder
@5StartMenuCommonDir | Path to Start Menu folder
@StartupCommonDir Path to Startup folder

Macros for Current User data.

@AppDataDir Path to current user's Roaming Application Data
@Local AppDataDir Path to current user's Local Application Data
@DesktopDir Path to current user's Deskiop

@MyDocumentsDir Path to My Documents target

@FavoritesDir Path to current user's Favorites

@ProgramsDir Path to current user's Programs (folder on Start Menu)
@5tartMenuDir Path to current user's Start Menu

@StartupDir current user's Startup folder

@UserProfileDir Path to current user's Profile folder,

Other macros for the computer system:

@HomeDrive Drive letter of drive containing current user's home directory.
@HomePath E,ESf;&;iﬁﬁgﬁ;ﬁgi;: home directory. To get the full path, use in
@HomeShare Server and share name containing current user's home directory.
@LogonDNSDomain Logon OMS Domain.

@LogonDomain Logon Domain.

@LogonServer Logon server.

@ProgramFilesDir Path to Program Files folder

@CommonFilesDir Path to Common Files folder

@WindowsDir Path to Windows folder

@SystemDir Path to the Windows' System (or System32) folder.

@TempDir Path to the temporary files folder.

@ComSpec Value of %COMSPECS, the SPECified secondary COMmMmand interpreter;

primary for command line uses, e.g. Run{@ComSpec & " /k help | more")

114 |Page
Jayme Fishman, Copyright 2015 all rights reserved

EQE
¥

‘2 REMINDER: Directory macros are shortcuts to popular directories that circumvent the need to

type in the entire path. They are also dynamic enough to find the paths on other users computers.

System Info macros
The following is a complete list of the System Info macros from the Autolt help file.

Macro
@CPUArch
@KBLayout

@MUILang

{@OSArch

@05Lang
@05Type

{@OSVersion

{@05Build
@055ervicePack
@ComputerName
@UserName
@IPAddress1
@IPAddress2
@IPAddress3
@|PAddressd

@DesktopHeight
@DesktopWidth
@DesktopDepth
@DesktopRefresh

Description
Returns "¥86" when the CPU is a 32-bit CPU and "X&4" when the CPU is 64-bit.
Returns code denoting Keyboard Layout. See Appendix for possible values.

Returns code denoting Multi Language if available (Vista is OK by default). See
Appendix for possible values.

Returns one of the following: "X86", "1A84", "X&4" - this is the architecture type of the
currently running operating system.

Returns code denoting OS5 Language. See Appendix for possible values.
Returns "WIN32_NT" for XP/2003/Vista/2008,/Win7/2008R2/Win8/2012,/Win8.1/2012R2.

Returns one of the following: "WIN_81", "WIN_8", "WIN_T", "WIN_VISTA", "WIN_XP",
"WIN_XPe",

for Windows servers: "WIN_2012R2", "WIN_2012", "WIN_2008R2", "WIN_2008",
"WIN_2003",

Returns the OS5 build number. For example, Windows 2003 Server returns 3730
Service pack info in the form of "Service Pack 3".

Computer's network name.

ID of the currently logged on user.

IP address of first network adapter. Tends to return 127.0.0.1 on some computers.
IP address of second network adapter. Returns 0.0.0.0 if not applicable.

IP address of third network adapter. Returns 0.0.0.0 if not applicable.

IP address of fourth network adapter. Returns 0.0.0.0 if not applicable.

Height of the primary display in pixels. (Vertical resolution)
Width of the primary display in pixels. (Horizontal resolution)
Depth of the primary display in bits per pixel.

Refresh rate of the primary display in hertz.

Let’s use one of these in an example to find out the version of our operating system. A single line of

code with a macro can display our results in a message box.

115|Page

Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 13 Example 1

1 #include <MsgBoxConstants.auds>
2 MsagBox ($MB OK, ", B0SVersion)
x
WIN_81
OK

As you can see from the output above, my machine is currently running Windows version 8.1.

Time and Date macros
Time and date macros can be used to find the current second, minute, hour, day, month, year etc. The

following is a complete listing of these macros from the Autolt help file:

Macro

@MSEC

@SEC
@MIN
@HOUR
@MDAY
@MON
@YEAR
@WDAY
@YDAY

Description

Milliseconds value of clock. Range is 00 to 999, The update frequency of this value depends on
the timer resolution of the hardware and may not update every millisecond.

Seconds value of clock. Range is 00 to 59

Minutes value of clock. Range is 00 to 39

Hours value of clock in 24-hour format. Range is 00 to 23

Current day of month. Range is 01 to 31

Current month. Range is 01 to 12

Current four-digit year

Mumeric day of week. Range is 1 to 7 which corresponds to Sunday through Saturday.

Current day of year. Range is 001 to 366 (or 001 to 365 if not a leap year)

If we wanted to display the current date we could do something like this:

Code

Chapter 13 Example 2

1 #include <MagBoxConstants.aundr
2 MagBox (sMB OK, ™", BMONz"/"sEMDAY "/ " s BYERR)

116 |Page

Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 13 Example 3

If we wanted to create the date with a timestamp we might alter that a bit as follows:
1 #include «<MsgBoxConstants.audr
2 MsgBox ($MB OK, "™, EMON:"/":@MDAY:"/":@YEAR:" Timestamp: "s@HOURs":":z@MIN:":"z@5EC

’-@, REMINDER: macros are predefined variables that provide shortcuts to certain system information.
They are preceded by an @ as opposed to a $ to avoid confusion with other variables.

Chapter 14: User defined functions

User defined functions, sometimes referred to as UDFs, are functions created by users in the Autolt
community that can be included in your scripts through the creation of custom functions discussed in
Chapter 7. These UDF take two forms: those that come with Autolt and are referenced in the help file
and those that do not. We have already seen an example of the former when we included the Array.au3
UDF so that we could use the function _ArrayDisplay. In this case, we found a well-documented UDF in
the Autolt help file with a complete listing of all its functions. The UDF functions that come with Autolt
look like other standard functions in all material respects except they are preceded by an underscore —
just like the custom functions we wrote in Chapter 7. The reason that the UDF functions appear to be so
similar and are part of the standard documentation and files that are downloaded with Autolt is because
they were created and maintained by power users within the Autolt community and deemed valuable
enough to be made available to everyone as part of the standard package. There are however, many
more UDFs available — many of which are equally powerful and useful but they are not part of the
standard download. You can find them in Autolt forums as attachments to posts or in the forum
download section. They are maintained there by the authors and you can find them by searching the
forum. Forum members will often recommend them if you create a post that could be solved through
the use of a UDF.

We can’t cover every UDF in this section as the UDFs are larger than the actual help file at this point.
However, we can pick out a few key UDFs to expand on some of the earlier concepts that we have
discussed. Let’s start with a closer examination of

Array.au3

We learned about arrays in Chapter 8. If you reflect back on that information you may note that we did
not address any specific functions relating to arrays. Why? Because most of the array functions are
handled by the Array.au3 UDF (which we had not covered at that point). If you expand the User Defined
Function Reference at the bottom of your help file you will see Array Management at the top of the
tree. If you expand that section you will see a series of functions that allow you to do all sorts of things
with arrays including display (we have already seen this), sort, search and more.

117 |Page
Jayme Fishman, Copyright 2015 all rights reserved

_ArrayDisplay
If we create a new array of popular fruits we can revisit the _ArrayDisplay function:

Code

Chapter 14 Example 1

A The include for our array UDF j

1 #include<Array.an3>
2 ["Grapefruit™, "Banana™, "Watermelon", “"Grape"”, "Apple™, "Guava"™, "Star fruit™, "Mango™, "Coconut™,
ArrayDisplay($fruits) "
N -) @ ArrayDisplay — F
aur new
array of Row Col D
pc_)plal' [0] Grapefruit
fruits The UDF [1] Banana
function 2 Watermelon The result of running
that B3l Grape the _ArrayDisplay
allows us 4 Apple function
fo [5] Guava
display 6] Star fruit
the array [7] Mango
Ina [8] Coconut
[49] Blueberry

Every function in the Array Management UDF will require the UDF be included in your script. The first
line of the above example includes the file needed to access the additional functions. Next, we created
an array containing ten popular fruits. The array has a zero based index so it is numbered 0 — 9 but it
contains 10 values in all. Finally, we called then _ArrayDisplay function and passed it the only
mandatory parameter of an array that we want to display. The result is that we see a listview window
open with the values of our array. This function is especially useful when you are debugging your
scripts. It allows you to visualize the contents of an array and validate that the arrays are formed the
way you had intended. If they are not, you can often get an error that you are trying to access
information that is outside the bounds of the array. Those errors can be difficult to resolve when you
can’t see the array to better understand the problem.

_ArraySearch

The _ArraySearch function allows us to search a given array for a value. If successful the index (position
in the array) for that value will be returned. If unsuccessful the error flag will be set with information as
to the cause of the failure. You can use the @error macro from Chapter 13 to explore the cause of the
failure in more detail.

118 |Page
Jayme Fishman, Copyright 2015 all rights reserved

"Blueberry™]

Code

Chapter 14 Example 2

1 #include<hrray.aud>
2 #include <MsgBoxConstants.au: 3
3 dim #fruits[10]=["Grapefruit™, "Banana", "Watermelon", "Grape", "Apple", "Guava","Star fruit™, "Mango", "Coconut", "Blueberrw"]
4 sgrapePos= ArraySearch($fruits, "grape")
5 MsgBox ($MB OK, "Position of grape", $grapePos) x
3

Using _ArraySearch on our fruits array we can search for the term “grape”. Grape is the fourth item in
the array. However, because the array has a zero based index the index position for “grape” is 3.

#
NOTE: _ArrayFindAll is another search function that will return an array of all the indices (positions)
of the searched term. You can use this function when you are looking for more than one occurrence.

_ArraySort
®

NOTE: the values contained in our array appear in the order in which they were entered. They are
not sorted by default.

What if wanted to sort the contents of our array alphabetically? We could use the _ArraySort function.
Let’s try it and combine it with _ArrayDisplay to see the results.

Code

Chapter 14 Example 3

1 #include<Array.aul>
2 dim $fruits[10]=["Grapefruit™, "Banana™, "Watermelon", "Grape", "Apple", "Guawva”,"Star fruit", "Mango™, "Coconut", "Blueberry™]
3 _ArraySort ($fruits)
4 _ArrayDisplay ($fruits)
Row Col0
[0] Apple
[1 Banana
[2] Blueberry
[3] Coconut
[4] Grape
[5] Grapefruit
[6] Guava
[71 Mango
[8] Star fruit
[9] Watermelon

As you can see, adding a line of code with the _ArraySort function alphabetized the contents of our
array.

119 |Page
Jayme Fishman, Copyright 2015 all rights reserved

File Management

The file management UDF contains a handful of powerful functions relating to files and directories. We
had to include the array UDF in order to use the array management functions. Likewise, in order to use
the file functions under the file management UDF we need to include the UDF in our script with the
following: #include <File.au3>.

_FileListToArray

_FileListToArray is very useful as it will return an array of all files and folders (or just one or the other
based on your parameters) for a given path. It also has options to filter the results and return the full
path for each entry.

_FileListToArray

Lists files and\or folders in a specified folder (Similar to using Dir with the /B Switch)

$include <File.au3>
_FileListToArray ($sFilePath [, $sFilter = "*" [, £iFlag = 0 [,
£fReturnPath = False]]l])

Parameters
$sFilePath Folder to generate filelist for.
. [optional] the filter to use, default is *. Search the helpfile for the word "WildCards" For
$sFilter :
details.
[optional] specifies whether to return files folders or both
SiFl 0 = (Default) Return both files and folders
Hiag 1 = Return files only
2 = Return Folders anly
$fReturnPath [optional] If True the full path is appended to the file\folder path, otherwise it's relative to

the $sFilePath folder. Default is False.

“uxn

If we use the _FileListToArray function and look for everything (using the as our filter which means
all) in the Windows directory (with one of our handy macros from Chapter 13) we can also use a flag (2)
to limit the contents of the array to directories. When we run this code we can see that the function

found 71 directories in my version of Windows under the windows folder.

120 | Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 14 Example 4

#include<hrray.aunds>
#include<File.auni>
t¢dirhrray= FileListToRrray (@WindowsDir, "*", 2)

ErrayDisplayi(sdirArray, "Windows Directories™)
_ ¥ ¥

[T BT o L S

ColD
71
addins
ADFS

[3] AppCompat
[4] apppatch

[5] AppReadiness
[6] assernbly

[7] Boot

Branding

_FilePrint
_FilePrint enables us to print a text file to our default printer. We can test this function on the file that

we created in Chapter 12. If you deleted that file you can recreate it with the script we used - or just
choose a different text file. Just make sure it is in the same directory as the code below.

Code
Chapter 14 Example 5

1 #include<File.aud>
2 _FilePrint (@ScriptDirs™\myfile.txt™)

Here again, there are many more functions to explore in this UDF. These are just a couple that you have
occasion to use early on in your scripting.

GUI UDFs

Most of the GUI components have a UDF that extends their capabilities. They are all grouped under GUI
Reference in the latest help file. That grouping includes sub-folders for specific components. You may
find that if you want to make a GUI control do something — and it is not clear from the standard help file
function as to how to do it — it may be the case that someone has made a UDF for it.

121 |Page
Jayme Fishman, Copyright 2015 all rights reserved

=R | GUI Reference

(£ GuiAVl Management

(7] GuiButton Management

[C3 GuiComboBox Management
[C7 GuiComboBoxEx Management
[C7 GuiDateTimePicker Management
[Z7] GuiEdit Management

[C3 GuiHeader Management
[C7 GuilmageList Management
(£ GuilPAddress Management
[Z7) GuilistBox Management

[C7 GuilistView Management
[GuiMenu Management

[C3 GuiMonthCal Management
|7 GuiReBar Management

|27 GuiRichEdit Management
[C7 GuiScrollBars Management
[C3 GuiSlider Management

[C3 GuiStatusBar Management
(7] GuiTab Management

[Z3 GuiToolbar Management
[C7 GuiToolTip Management
(L7 GuiTreeView Management

GUI reference directory and sub directories from the Autolt help file

SQLite

We have already discussed file creation in Chapter 12. We covered how to create files and read the
information back into your program. However, that may not be the best way to store and retrieve
information for you application. If you application stores a lot of data and needs to query it you may
find that you need to use a database. SQLite is a truly free open source database.” The authors have
renounced any ownership and have placed it in the public domain. That means you are free to use it in
your projects. To do that, you can use the SQLIte UDF.

#

NOTE: The use of SQLite requires you to write Structured Query Language (SQL) statements using
SQlLite’s syntax. The database is well documented on their website. However, it is not very intuitive.
The good news is that the database is so widely used that a simple Google search for what you are trying
to do will usually yield strong results. You can also post your questions to the Autolt forum.

* All of the code and documentation in SQLite has been dedicated to the public domain by the authors. All code
authors, and representatives of the companies they work for, have signed affidavits dedicating their contributions
to the public domain and originals of those signed affidavits are stored in a firesafe at the main offices of Hwaci.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute the original SQLite code, either in source
code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means.
http://www.salite.org/copyright.html

122 |Page
Jayme Fishman, Copyright 2015 all rights reserved

http://en.wikipedia.org/wiki/Public_Domain
http://www.hwaci.com/
http://www.sqlite.org/copyright.html

SQLite has two different modes that can be used in your application. It can be run “in-memory” which
means that the database you are creating is temporary — only available while the program is running —
or you can create a physical database that will store the data “offline” when the program exits and be
available the next time the program is started. Let’s create one of each and, though it is beyond the
scope of this text, create a simple query from the database. We will use the code in the Autolt help file
for both examples.

In-memory database
If you navigate to _SQLite_Exec in the help file you will see the code below:

Code

Chapter 14 Example 6

% #include <3QLite.aud> e Required includes for SQLite
#include «<5QLite.dll.aud> to function

&Lccal thQuery, SaRow Declaration of

 SQLite Startup L variables
ConsoleWrite (" _SQLite LibVersion=" & _SQLite LibVersion & BCELF
_SQLite Open
Without $sCallback it's a resultless statement
_SQLite Exec(-1, "Create table tblTest (a,b int,c single not null):;"™

y e E e ' e e
"Insert into tbhlTest wvalues ("1',2,3):" & _
"Insert into tbhblTest wvalues (Null,S,6):™
Local #d = _SQLite Exec(-1, "Select rowid,* From tblTest", ™ _cb™) ; cb will be called for each row
[-] Func _cb($aRow

For $3 In #aRow
/ Next
ConsoleWrite (@CRLF
¢ Return $S0LITE ABORT ; Would Abort the process and trigger an ferror in _S0Lite Exec()
EndFunc ;==» cb

ConscleWrite (s = ETRB
_S5QLite Cloae

_SQLite Shutdown

M Output that will be created
T GLupLu on the consaole when we

ks
Ly

run this script

1.) This loads the SQLite.dll. A “DLL” is a Dynamic Link Library — a collection of functions that can be
used by more than one program. It is a lot like a script that you include in your program except
is compiled into a specific format and cannot be modified.

2.) This creates our database. It is worth noting that since we are not passing any parameters this
will be an in-memory database. If we passed optional parameters for a filename, as we will do
in the next example, it would be a physical database.

3.) The _SQlite_Exec function executes SQLite statements (that is database speak for runs them).
In this case, the statement that is being executed is creating a table (a collection of rows and
columns similar to what you may envision in a spreadsheet but they can contain different

123 |Page
Jayme Fishman, Copyright 2015 all rights reserved

datatypes and be queried). It is also conveniently inserting some data into the table that we can
retrieve in the next step.

4.) The statement being executed in this line of code is selecting everything in the table by row id
(the row number in the metaphorical spreadsheet we envisioned) . Then it is calling a custom
function at the end called “_cb” which is an abbreviation for “callback”. The callback function is
an optional parameter that allows you to call another function for each row. In this case the
callback function is using a for loop to write the contents of the query to the console.

5.) This is the callback function referenced in #4 above.
]

NOTE: the use of the for loop use on this line of code. It differs from the others that we
covered in Chapter 6. It is a special kind of a for loop referred to as For ... In ... Next. It allows us
to enumerate elements in an object collection or an array (from the Autolt help file). Thatis a
fancy way of saying do something for as many times as there are elements in an array or an

object.
&

NOTE: Objects in this context are data structures that we have not covered. For now all we
need to understand is that they can hold collections of information similar to an array.
6.) This closes the open database.
7.) This unloads the SQLite.dIl.

When you run the code in this example you will see the output that is commented out at the bottom of
the screen appear in your console. The output contains all the information in our in-memory database.

=3

rowid a c

N M

Physical database
To create the same example but make the database a physical database that we can re-use we need to
change the code in step 2.

~ oo : o

pen{@ScriptDire"\example .db™

L

NLite
e EE

We know the @ScriptDir macro from Chapter 13. Using it as part of this parameter will place a copy of
the newly created database in the same directory as our script. Once we do that we can modify our
example to read the physical database and output the results the exact same way:

124 |Page
Jayme Fishman, Copyright 2015 all rights reserved

1 nde <SQLite.aud> Mote this example removed the code that created and

2 e <5QLite.d1l.au3> populated the table because we already save that table and
3 it's data when we save a copy of the physical database

4 Local s$huery, saBow

=] _SQLite_Startup

[ConsoleWrite ("_3SQLite_LibVersion=" _SQLite_LibVersion BCRLF

7 _SQLite Open(@ScriptDir:"\example.db"

g Local §d = _S5QLite Exec(-1, "Select rowid,* From tblTest™, “_cb™} ; cb will be called for each row
3

10 Func _chisaRow

11 For $3 In saFow

12 ConaoleWrite (&3 BTRAB

13 Hext

14 ConsoleWrite (BCRLE

15 ; Return $5QLTTE ABORT ; Would Abort the process and trigger an @error in 50Lite Exec()
16 EndFunc s==> ckb

17 SQLite Cloae

18 _SQLite_Shutdown

13

20 £ Output:

21 s 1 i 2 3

22 24 L 3

23

The two major differences in this example are: (1) we are opening a copy of the physical database that
we created when we changed line 2 (we would have had to run that code for it to be there), and (2) we
removed the creation of the table and data because they already exist when we saved our physical
database. Now we are opening up that database, reading its contents, and displaying them just as we
did for the in-memory version.

Chapter 15: Automating other applications

The help file introduces Autolt as “... a freeware BASIC-like scripting language designed for automating
the Windows GUI and general scripting.” So far we have focused on the general scripting side of Autolt
because the information is very similar to other languages and provides a nice foundation for
introductory programming techniques. This chapter will explore the other main design tenant of Autolt
- the automation of other applications.

There are many ways to automate other applications with Autolt. We'll focus on two main categories:
sending commands to existing windows and controls and use of application interfaces with existing
UDFs.

Sending commands to existing windows and controls (targets) requires that we either identify the

targets or that we send a series of keystrokes. ldentifying the targets and interacting with them is a
more reliable methodology. Just know that some programs may be written with technologies that
make it more difficult to identify their controls in a way that is conducive to automation. There are

125 |Page
Jayme Fishman, Copyright 2015 all rights reserved

some advanced techniques for those types of situations but our focus will be basic Windows form
similar to the GUIs that we created in Chapters 9 & 10.°

Windows Management

Autolt has many pre-built functions for interacting with windows. To get started we will need to open a
couple of windows so that we can control them. Let’s start with two that everyone should have:
notepad and calculator. Locate those applications on your PC and start them up. You should see the
following:

File Edit | Format | View Help

Calculator = U
View Edit Help

mMC MR M5 M=+ B

> One such advanced technique is the use of Microsoft’s UIAutomation framework. There is an existing UDF for
this that has been “pinned” in the Autolt forum’s example scripts — meaning it appears at the top in that area of
the forum: http://www.autoitscript.com/forum/topic/153520-iuiautomation-ms-framework-automate-chrome-ff-

ie/

126 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Notice that each application has a title at the top of the window - "Untitled - Notepad" and "Calculator"
respectively. Itis also important to understand that when you click on the window for notepad or
calculator the window is “activated” and takes on a slightly different color. An activated window will be
the default recipient of all your keystrokes. If you were to activate notepad with a mouse click and then
start typing that text would appear within the notepad application. The same thing would happen for
the calculator application except it would only accept certain values (i.e. numbers). Meanwhile, if you
were to click somewhere else on your desktop the window that was activated would still be there — but
it would be deactivated.

WinAcvitate

WinActivate

Activates (gives focus to) a window.

WinZctivate (["title"™ [, "text"] }

Parameters

fitle The title/hwnd/class of the window to activate. See Title special
definition.

teadt [optional] The text of the window to activate. Default is an empty

string. See Text special definition.

With our two programs running we can write a simple script to activate one window and then the other.
The WinActivate function will do this for us and accepts the parameter “title/hWnd/class” to identify the
window. The title is self-explanatory; we already know that this will either be "Untitled - Notepad" or
"Calculator". The help file offers a detailed explanation of hWnd: “The variant datatype in Autolt
natively supports window handles (HWNDs). A window handle is a special value that Windows assigns
to windows each time they are created. When you have a handle you may use it in place of the title
parameter in any of the function calls that use the title/text convention. The advantage of using
window handles is that if you have multiple copies of an application open which have the same title/text

76

then you can uniquely identify them using handles.”” Class refers to the “... internal window classname”.

Any one of those three values will allow us to activate the windows.

® From the Window Titles and Text (Advanced) section of the Autolt help file.

127 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 15 Example 1

Sleep
1 tnotepad=Winhkctivate ("Untitled - Hotepad"
2 3leep (2000

3 ftcalculator=Winhctivate ("Calculator™

If you run the above code you will activate the notepad window, then there will be a two second delay,
and then the calculator window will activate. Activating the windows with WinActivate is pretty well
understood but why and how did we create the two second delay? We used a delay because If we did
not we might not be able to detect the change from activating notepad and then the calculator because
the program would execute in the instructions very quickly. Therefore, we used a function called
“sleep” that accepts milliseconds (thousandths of a second) as a parameter. By using 2000 milliseconds
we created a two second delay.

@
NOTE: On success the function will return a handle for the activated window. The handle will be
stored in the variables that we created called Snotepad and Scalculator respectively. We can use those
handles for additional function calls to further interact with the windows.

WinClose

If we want to close a window we can use the WinClose function. We can modify our code above to add
an additional line that will close notepad after calculator is activated. However, this time, we can use
notepad’s handle that we captured from its activation.

Code

Chapter 15 Example 2

tnotepad=WinActivate ("Untitled - Hoteped"
gleep (2000
f(calculator=Winkctivate ("Calculator™

WinCloae (snotepad)

5 LA = L Rk

Now our program will activate notepad, pause, activate calculator, then close notepad using its handle.

WinWaitActivate

You will invariably want to do more than simply activate a window. The activation is what sets you up to
send instructions to the window. Sometimes you may incur a small delay while your window is opening
For example — a program that says “loading” or one that takes a few seconds to fully appear before you
can start to use it. What would happen if you started to send instructions to that window before it was
ready? It would not be able to receive all the instructions. Therefore, we may want to use an activation
that pauses the rest of our script until the targeted window becomes active. That is exactly what
WinWaitActivate does.

128 |Page
Jayme Fishman, Copyright 2015 all rights reserved

WinWaitActive

Pauses execution of the script until the requested window is active.

WinWaithctive (["titcle" [, "text" [, timeocut = 0]])

Parameters

title The title/hWnd/class of the window to check. See Title special definition.
[optional] The text of the window to check. Default is an empty string.
text . o
See Text special definition.
. [optional] Timeout in seconds if the window is not active, Default is 0
timeout

(no timeout),

You may notice that the parameters of WinWaitActivate are very similar to those of WinActivate except
there is an additional optional parameter for timeout. What would happen if you paused your script to
wait for a window to become activated but it never did (maybe it was not open and you forgot to open
it)? Your script would “hang” (become paused indefinitely). Therefore, it is a good idea to use a timeout
parameter that will abandon the paused state after so many seconds if the window has not become
activated.

@
NOTE: The timeout parameter is stated in seconds for this function. Some functions (most) use
seconds while others may use milliseconds (i.e. sleep). Always be careful to check the unit of time
measure for these functions.

#
NOTE: Autoit has a function to set certain options aptly named “AutoltSetOption”. One such
option is to set the windows title matching mode as follows:

Opt("WinTitleMatchMode", 1) ;1=start, 2=subStr, 3=exact, 4=advanced, -1 to -4=Nocase

This option is handy when differentiating between situations where you know the exact title, a portion
of the title, and whether or not it is case sensitive, etc.

Send

The send function sends simulated keystrokes to the active window. Let’s re-open notepad and alter
our code a bit to send some text to it.

129 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Chapter 15 Example 3

tnotepad=Winkctivate ("Untitled - HNoteped")
WinWaithAetive (Snotepad, "™, 3)
gend ("Learning about automation is fun™)

[TR N

Running the above code will activate an existing notepad window (i.e. one that we have already
opened), wait until it is active, and then send the text “Learning about automation is fun”. The sent text
will appear in notepad after the program is run because that is the active window.

File Edit Format View Help

Learning about automation is fun

What would happen if for some reason we did not wait for that window to become active or if the
timeout delay ended and the window was still not active (perhaps because the program was not
running?). If we use the timeout parameter the script would continue and send the simulated
keystrokes to the active window — whatever that may be — which could cause some strange things to
happen. Therefore, you need to careful when using send.

'
— NOTE: we also could have started notepad from our code instead of opening it first by hand and

then activating the windows. To do that we could use the Run function.

Code

Chapter 15 Example 4

Run
1 Bun ("notepad.exe™)
2 WinWaitActive ("Untitled - Hoteped"™)

3 Send ("Learning about automation is fun™)

Run is used to run external programs. In this case we could use it to run notepad with the above code,
wait for the window to become active (we are more likely to incur a delay when we run it from scratch
then if it were already open) and send our keystrokes.

130 | Page
Jayme Fishman, Copyright 2015 all rights reserved

Send supports many different combinations to simulate different types of keystrokes. For example,
II!II

notepad contains a shortcut to the file menu in the form of pressing ALT + F. The exclamation point
simulates the ALT key so sending “!F” would send ALT+F. Let’s try it.

Code
Chapter 15 Example 5

1 Bun ("notepad.exe™
2 WinWaithetiwve ("Untitled - Hotepad"

3 Send("™!F"

Running the above code ran an instance of notepad, waited for the window to become active, and then
sent ALT+F to the activated window. This resulted in the activation of notepad’s file menu.

El Untitled - Notepad - olE
Eile | Edit Format Yiew Help

Mew Ctrl+M
Open... Ctrl+0
Save Ctrl+5
Save As

Page Setup

Erint... Ctrl+P
Exit

You can refer to the help file for a complete listing of all send key combinations and approaches.

Updating controls

At this point we can manipulate windows and send simulated keystrokes to the active window. We can
also use keys in order to open a menu item that has a shortcut before sending additional simulated
keystrokes. That is all good stuff but what if we wanted to update a specific input control? If we
created the control from within our application then it would be easy — we could use the control handle
returned to us when we created the control with the GUIControlSetData (not previously discussed but
documented in the help file) function to update it. What if we wanted to update the calculator screen
and buttons with some text? Since we did not create the control we have to find its ControllD some
other way. To do this we will use a tool that ship with Autolt called “Au3info”. First, run the calculator
program. Next, go to SciTE and open a new or existing au3 file (if it is new you will need to save it with
an au3 extension). Finally, go to the tools menu and click on Au3Info.

131 |Page
Jayme Fishman, Copyright 2015 all rights reserved

File Edit Search View | Tools
Compile Ctrl+F7
Build F7
Go F3

SyntaxCheck Prod Ctrl+F3
Al3Info trl+F&
Al3Recorder Alt+F&
Tidy Autclt Source Ctrl+T
CodeWizard Alt+W
Koda(FormDesigner) Alt+m

Ctrlz1

Tt s s

If you successfully launched the tool you should see the following.

Au3Info

File Options Help

Basic Window Info
Title: | |

Class: | |

Basic Control Info Finder Tool
Class:

|
Instance: |:|

(Double-click list entries to copy to clipboand)

| Hidden Text | StatusBar | Mouse | Summary [«]+]

= Window << ~
Title:

Class:

Position:

Size:

=»2> Control <<
Class:

Instance:
ClassnameMM:
Advanced (Class):

132 | Page
Jayme Fishman, Copyright 2015 all rights reserved

The finder tool is a drag-and-drop crosshair that can be used to get more information about controls in
other applications.” If we drag the cross hair into the window of our calculator application where the
numbers appear we will get some information about the control. If we were to do that we would see
that the control has a very specific class and instance of the class.

@ (Frozen) Autolt v3 Wind.. - ©

File Options Help View Edit Help
Basic Window Info
Title: Calculator

Class: CalcFrame

Basic Control Info Finder Toal

Class: Static i

Instance: |4

(Dauble-click list entries to copy to clipboard)

Hidden Text | StatusBar | Mouse | Summary il

Instance: 4

ClassnameMM: Staticd

Advanced (Class). [CLASS:Static; INSTANCE:4
ID: 150

Tent: 0
Position: 29, 25
Size: 167, 28 W

We can repeat that same exercise and discover the names of all the numbered buttons. We might also
discover that there is a small input area above the number display that we can read. Now comes the
cool part ... remember when we were sending key strokes? That process allowed us to interact with the
calculator program in a way that was consistent with its contemplated design. This meant that we could
not send text to the numbers area — it would only accept numeric values as an activated window.
However, now that we know the IDs of the individual controls we have more flexibility to send text to
them using ControlSetText. We could make a small program that would do something like this:

’ Note: this may not always work. Some applications may be written with technologies that require another
approach. See footnote 5 re: MS UlAutomation.

133 |Page
Jayme Fishman, Copyright 2015 all rights reserved

View Edit Help

Automate with AutoIt!

Yeah!!®

|MC||MR||M5||M+|| M-

« <]
--n--
o o Jlo Joo]

We will go over the code in just a moment. However, notice that we were able to update the pane
above the numbers panel and then also send text to the area traditionally reserved for numbers only.
This is especially handy when you consider the user interface (the calculator itself) has no way to enter
non numeric values. As an added goof we changed all the numeric buttons to the number 8 from their
original values of 1-9 and 0. Let’s review the code:

134 | Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 15 Example 6 (with final mods for the “A” change discussed in a moment)
s First we opened an instance of calculator
1 |jrun "calc.exe™

tcalc=WinWaithctiwe ("Calculator™) ; activates

——- Panes
2 CcontrolTopPane = " [CLASS:Staticy; INSTANCE:2]" ; pane above numbers
scontrolNumberPane = " [CLASS:Static; INSTANCE:4]":; numbers pane
; update panes with our text
3 ControlSetText ("Calculator™, ™", ScontrolTopPane, "Automete with AutoIt!™
ControlSetText ("Calculator™, "™, scontrolNumberPane, "Yeah! 11"
[~ J-Buttons
= controlOneBtn = " [CLASS:Button; INSTANCE:S5)":; one button

$controlTwoBtn = " [CLASS:Button; INSTANCE:11]1"; two button

$controlThreeBtn = " [CLASS:Button; INSTRANCE:16]"; three button
$scontrolFourBtn = " [CLASS:Button; INSTANCE:4]": four button
tcontrolFiveBtn = " [CLASS:Button; INSTANCE:10]": five button
ScontrolSixBtn = "[CLA&SS:Button; INSTANCE:15]™: six button
$controlSevenBtn = " [CLASS:Button; INSTANCE:3]"; seven button
tcontrolEightBtn = " [CLASS:Button; INSTAWNCE:S5]™: eight button
fcontrolNineBtn = " [CLASS:Button; INSTANCE:14]": nine button
tcontrolZeroBtn = " [CLASS:Button; INSTANCE:&6]™.; nine button
5 ; an array of the buttons that we can loop through to update them all

g
dim sbtnArray[l0]=[%fcontrolineBtn, scontrolTwoBtn, S$controlThreeBtn, ScontrolFour

B $text="A" ; wsed to update all buttons
; The loop that sets all the buttons to "A"™

7 for $a=0 to ubound|$fbtnhrray)-1
ControlSetText ("Calculator™, ™", sbtnlArray[$a], stext

next

1.) We ran the calculator program and waited for the window to be active.

2.) We used the values obtained from Au3info about the main numbers pane and the invisible pane
above it (where we wrote “Automate with Autolt!) which we assigned to variables.

3.) We set the text of the two panes to “Yeah!!!” and “Automate with Autolt!” respectively.

4.) We used the Au3lInfo tool to get the class names and instances for all the numeric buttons on
the calculator and assigned them to variables.

5.) We created an array that stores all 10 button variables — it is cut off in the above picture. The
full text looks like this:
SbtnArray[10]=[ScontrolOneBtn,ScontrolTwoBtn,ScontrolThreeBtn,ScontrolFourBtn,ScontrolFiv
eBtn,ScontrolSixBtn,ScontrolSevenBtn,ScontrolEightBtn,ScontrolNineBtn,ScontrolZeroBtn]

6.) We created a variable that holds the text we used to replace all the previous text on the buttons
(i.e. 1-9 and 0). This way we could change the buttons to any other value if we re-run it.

7.) We used a for loop to loop through the array containing the buttons and change their text to the
text stored in our variable. The array is a zero based array meaning the first value is stored in

135|Page
Jayme Fishman, Copyright 2015 all rights reserved

the “0” index. Therefore, our loop will run from “0” to the upper bound of the array (which is 10
because there are 10 buttons) less one. That is because, as we learned earlier though there are
ten pieces of information the last one is stored at position nine (0-9 = 10 items). Finally we used
ControlSetText to set text to the control. This is an example of using arrays in our code to save a
lot of time. The alternative could have been to write 10 lines of code each of which would have
had to have been customized. Instead, we were able to loop through the array and use
variables so that if wanted to change them to anything else in the future it would be easy. For
example — if we change the “8” in our Stext variable to “A” it would look like this:

A A A
A A A
A A A
A
ControlSetText

ControlSetText

Sets text of a control.

ControlSetText ("title"™, "tCext™, controllD, "new text™ [,
flag = 0])

Parameters

it The title/hWnd/class of the window to access. See Title special
e definition,

text The text of the window to access. See Text special definition.

controllD The control to interact with, See Controls.
new text The new text to be set into the contraol,

[optional] when different from 0 {default) will force the target window
to be redrawn.

flag
ControlSetText requires the title of the window that we want to access (in this case “Calculator”) and
the text of the window (which we left as blank). The controlID is the class that we found using Au3Info
which we are storing in our variables. Finally, the last parameter is the text we want to set on the
control (in our case this came from our Stext variable).

136 |Page
Jayme Fishman, Copyright 2015 all rights reserved

NOTE: even though we changed the text on the controls we did not impact their underlying
functions. Therefore, the 1 -9 and 0 buttons would all still produce their true values on the screen. All
we did was change the text on the buttons.

ControlCommand

Sometimes setting the text of a control is enough. You may want to send it commands. We have
already seen that you can simulate this with send. You can also use ControlCommand to send
commands to certain controls. Let’s add the following to the end of our calculator application:

Code

Chapter 15 Example 7

1 I R T e e e e s ol T 4
- C‘E_C}' L0 V1EW -_p'r_l\:._.'.l:_ resuilcs

3leep (2000} : sma

71
el T 1, o ms e e AT T
OVOKE SCleniills a4l modse ALl A

gend ("!2" ALT + 2 shortcub
tradiansRadic="[CLASS:Button; INSTANCE:30]™ ; the radians radioc button An3Info
WinWaitActive ("Calculator”™) ; wait for new mode to become active

ControlCommand ("Calculator™, ™™, sradiansRadia, "check™) ; select radian radic

The comments in the above code explain what we are doing. First, because this code is placed at the
end of our existing program that changed the numbers on the calculator we are adding a two second
delay with sleep so that we can still observe our updated controls. Then we are using send to invoke the
shortcut that switches the calculator into scientific mode. That may take a second or two so we wait for
that window to become active again before we send a command to the scientific calculator to switch to
radians. This last step uses ControlCommand. The first three parameters are similar to those found in
ControlSetText. However, the last parameter is from a list of possible commands found in the help file.

The final result will look like this:

137 |Page
Jayme Fishman, Copyright 2015 all rights reserved

View Edit Help _
Our code selected this

DDegrees @Rad‘ians O Grads

Inv In

ControlSend

This function works similar to Send but instead of sending the keystrokes to the active window it sends
the directly to a specific window / control. Therefore, unlike ControlSetText we can’t use it to do things
that were not intended by the original program. That means we can only send keystrokes to the
calculator that it would understand. To do this we could use the following code:

ControlSend ("Calculator™, ™", ScontrolNumberPane, "99999") : enters 959999 inte the num pane
The above code would make the number pane on the initial calculator screen show “99999”. What

would happen if we tried to send “Hello World to that control? It may not understand what we are
sending and it could throw an error:

138 | Page
Jayme Fishman, Copyright 2015 all rights reserved

View Edit Help

reciproc(@)

Cannot divide by zero

f+

'
— NOTE: Compare to ControlSetText where we forced the text on the control instead of sending
simulated keystrokes to it.

Mouse Management

We have already covered sending opening programs, simulating keystrokes, and even interacting with
windows and controls directly. However, sometimes you may have a need to simulate mouse
movements and clicks. The help file has an entire section on this topic and lists several useful
functions. We will cover MouseGetPos and MouseMove as running those two functions will be benign
whereas some of the other functions would simulate mouse clicks somewhere on your screen and we all
have different screens so you can explore those on your own.

Function Description

MouseClick Perform a mouse click operation.

MouseClickDrag Perform a mouse click and drag operation.

MouseDown Perform a mouse down event at the current mouse position,

MouseGetCursor Returns the cursor ID Mumber for the current Mouse Cursor,

MouseGetPos Retrieves the current position of the mouse cursor.
hMousehove Moves the mouse pointer,

MouselUp Perform a mouse up event at the current mouse position.
MouseWheel Moves the mouse wheel up or down,

139 | Page
Jayme Fishman, Copyright 2015 all rights reserved

MouseGetPos

MouseGetPos will return the X (horizontal), Y (vertical) coordinates of your mouse on your screen. The
results will be stored in an array with the Sarray[0] position representing x and the Sarray[1] position
representingy.

MouseMove
MouseMove will move your move your mouse to a given x,y coordinate at an optionally supplied speed.

Code

Chapter 15 Example 8

Sleep (2000

tmousePos=MouseGetPos
tmouseX=tmousePos [0
tmouseY=tmousePos[1l

mousemove ([SmouseX+100, smouse¥+100

The above code determines the current position of the mouse and returns the X, Y coordinates in an
array. Then it moves the mouse 100 pixels to the right and 100 pixels down. Notice the Sleep(2000) at
the start. Thatis a two second delay in case you want to position your mouse after you start the script.

External application UDFs

Another useful way to work with external applications is through User Defined Functions (UDFs). We
already saw this when we covered UDFs in Chapter 14. Do you recall the SQLite UDF that allowed us to
create in-memory and physical databases with SQLite? That was an example of using a UDF with an
external application. Autolt ships with several UDFs that allow you to manipulate other applications
such as Excel and Word. There are also many more UDFs that automate external applications which
have been posted on the forum by various users.

But how do they work? Most of these UDFs are using an application programming interface (i.e. specific
functions that are allowed to interact with other programs). The beauty of the UDFs is that they hide
much of this complexity. Though it would be useful, you don’t need to understand the functions at the
code level to use them. You can simply include the functions in your script and enjoy the benefits.

Excel UDF
F

NOTE: You will need to have Microsoft Excel installed on your PC to test these scripts.

The Excel UDF allows you to open up a new or existing Excel workbook and then automate a host of
useful functions.

The first thing we need to do is open a new instance of Excel to obtain a reference to the Excel object
that we intend to automate.

140 |Page
Jayme Fishman, Copyright 2015 all rights reserved

_Excel_Open

_Excel_Open

Connects to an existing Excel instance or creates a new one

#include <Excel.au3>
_Excel Cpen ([$bVisible = True [, $bDisplayBAlerts = False [, $bScreenUpdating = True [,
SbInteractive = True [, SbForceNew = False]]111)

Parameters

thVisible [optional] True specifies that the application will be visible (default = True)
$bDisplayalerts [optional] False suppresses all prompts and alert messages while opening a workbook (default = False)
$bScreenUpdating [optional] False suppresses screen updating to speed up your script (default = True)

[optional] If False, Excel blocks all keyboard and mouse input by the user (except input to dialog boxes)

$binteractive {default = True)

[optional] True forces to create a new Excel instance even if there is already a running instance (default =

ShForceMew False)

This function allows us to create a new instance of Excel or connect to a new one. All of its parameters
are optional and control the visibility, alerts, etc. To create a new Excel instance all we have to do is
type the following:

Code

Chapter 15 Example 9

1 fo0Excel = Excel Open

Upon successful completion the function will return an Excel application object which we will store in
the SoExcel variable. Next, we need to create a new instance of an Excel workbook. For that we will
use _Excel_BookNew.

141 |Page
Jayme Fishman, Copyright 2015 all rights reserved

_Excel_BookNew

_Excel BookNew

Creates a new workbook

$include <Excel.au3>
_Excel BookNew ($oExcel [, $iSheets = Default])

Parameters
$oExcel Excel application object where you want to create the new workbook
SiSheets [optional] Number of sheets to create in the new workbook (default = keyword Default = Excel default

value), Maximum is 255

Let’s use a couple of lines of code to create an Excel object and open a workbook:

Code

Chapter 15 Example 10

1 #include<Excel .auld>

2 I-_H foExcel = Excel Open

2 sworkbook=_Excel BookMNew(5o0Excel, 3

1. Thisis a reference to the Excel UDF that must be included in our script in order for us to have
access to its functions.
This creates the Excel application object.
This creates an Excel workbook and optionally specifies that it should have three sheets.

If you run this code on a machine that has Excel installed you should see the application pop open with
new workbook containing three sheets.

142 |Page
Jayme Fishman, Copyright 2015 all rights reserved

- .
= Bookl - Microsoft Excel non-commercial use

Home Insert Page Layout Farmulas Data Review View

General

$ - % 9
e I S
Clipboard & Font P Alignment P Mumber
Al - [|
A D

Calibri 11 -
B 7 U~ A A

141

1
2
3
4
5
]
7
8
9

w
M 4 » M| Sheetl 'Sheet? . Sheet3 #¥1 4] i | 0

Ready | [EOE o U ®

Opening a new copy of Excel and a blank workbook is a pretty good trick but we will need to do more
than that if our program is to be useful. The ability to read and write to and from a spreadsheet will
open up a lot of automation opportunities especially if were to combine those operations with some of
the concepts from prior chapters such as loops and string management.

'
— NOTE: by using arrays, loops, and string management along with Excel automation we can create
powerful data cleansing / transformation programs.

Let’s add some data to our blank workbook to demonstrate some additional concepts of the Excel UDF.
You may remember our Speople array from Chapter 8. We have re-created it in the code snippet below.
After we create the array we use _Excel_RangeWrite to write the data to the workbook. If you run the
code snippet below you should see the data added to the workbook.

143 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 15 Example 11

1 #include<Excel .au3>
2 #include<hrray.aud>
= foExcel = Excel Open()
4 sworkbook=_Excel BookNew($oExcel, 3)
5
& global specple[3][2] = [["John", 34], ["Stewve™, 23], ["Bob™, 41]]
T _Excel BangeWrite($workbook,l, $people)
X icrosoft Excel non-commercial use
Home Insert Page Layout Formulas Data Review View & e =R
& Calibri B %] Eﬁ General - & ﬁ - ‘EV
G- B L U- AW =8 $-% B~ 24
Paste . | o Styles | Cells
- F E b A EEE | P %6 3% - - | @
Clipboard 1w | Font | Alignment m| Number | | | Editing
Al v (= £ | John
A | 8 | ¢ | o | e | f | & | w |
1 |lohn 34
The data from
£l Steve = our $people
B }
5
(7]
7
8
9
10
11
12
13
M 4 + M| Sheetl Sheet? . Sheet3 . ¥1 4] i |]
R —

Let’s take a closer look at the _Excel_RangeWrite function:

144 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Excel_RangeWrite

_Excel_RangeWrite

Writes value(s) or formula(s) to a cell or a cell range on the specified workbook and worksheet

#include <Excel.au3>

_Excel RangeWrite ($oWorkbook, $vWorksheet, $vValue [, $vRange = "A1" [, $bValue = True
[, SbForceFunc = False]]])

Parameters

foWorkbook Excel workbook object

fvWorksheet Mame, index or worksheet object to be written to. If set to keyword Default the active sheet will be used
fwwalue Can be a string, a 1D or 2D zero based array containing the data to be written to the worksheet
fvRange [optional] Either an A1 range or a range object (default = "A1")

$bvalue [optional] If True the $vWalue will be written to the value property. If False $vWalue will be written to the

formula property (default = True)

[optional] True forces to use the _ArrayTranspose function instead of the Excel transpose method (default
$hForceFunc = False).
See the Remarks section for details.

The function can be used to write values or formula to a specific cell or to a range of cells on a specified
worksheet within a workbook. In our case, we wrote an array to worksheet 1. The code looked like this:

_Excel_RangeWrite(Sworkbook,1,Speople)

That code supplies the first three mandatory parameters: the workbook object, which sheet to write to,
and the value to be written. Note that the second parameter could be the name of the sheet (as in
“Sheet1”, an index (which is what we used when we supplied 1 to as a reference to the first sheet, or a
worksheet object. The value could be string or an array. In our case it was an array containing names
and ages.

Did you notice that our array started in the first row and column of the worksheet (i.e. A1)? What if we
wanted it to start on B2 instead? Adding the optional fourth parameter for range could help us do
exactly that:

_Excel RangeWrite (sworkbook,l, speople, "B2"

Now, having specified we want to start at B2 our results would look like this:

Now the data is written to B2 as a starting point:

145 |Page
Jayme Fishman, Copyright 2015 all rights reserved

ha

Paste :? Font |Alignment Mumber Styles | Cells

o - - -

Clipboard T

After we add some data to our workbook we may want to save it under a different name. To do that we
can use the _Excel BookSaveAs function.

146 |Page
Jayme Fishman, Copyright 2015 all rights reserved

_Excel_BookSaveAs

_Excel BookSaveAs

Saves the specified workbook with a new filename and/or type

$include <Excel.au3>

_Excel BookSavehs ($oWorkbook, $sFilePath [, $iFormat = $xlWorkbookDefault [,
EphOverWrite = False [, %sPassword = Default [, %sWritePassword = Default [,
S£bReadCnlyRecommended = False]1111)

Parameters
$oworkbook Workbook object to be saved
$sFilePath Path and filename of the file to be read
$iFormat [optional] Excel writeable filetype. Can be any value of the XIFileFormat enumeration.
ShOverWrite [optional] True overwrites an already existing file (default = False)
$spassword [optional] The string password to protect the sheet with. If set to keyword Default no password
will be used (default = keyword Default)
. [optional] The string write-access password to protect the sheet with. If set to keyword Default
$sWritePassword no password will be used (default = keyword Default)
$bReadOnlyRecommended [optional] True displays a message when the file is opened, recommending that the file be

opened as read-only (default = False)

Using this function we can save our workbook to our script directory and call it names.xlsx with the
following code:

Code

Chapter 15 Example 12

_Excel BookSawvels ($workbook, BScriptDirs™\names.xlsx"

In the above code we have supplied a reference to the workbook and the path, including the filename,
used to save a copy of the workbook. We could have optionally supplied dome parameters to change
the file type of our saved workbook, specify whether or not it can be overridden, and password protect
it.

So far we have created a brand new workbook, added data to it, and saved the workbook down with a
new name. You may also have need to open an existing workbook that already contains data. For this,
you can use _Excel_BookOpen.

147 |Page
Jayme Fishman, Copyright 2015 all rights reserved

_Excel_BookOpen

_Excel_BookOpen

Opens an existing workbook

#include <Excel.aul>
_Excel BookOpen [$oExcel, £sFilePath [, $bReadOnly = False [, $bVisible = True [,
ZsPassword = Default [, £sWritePassword = Default]]ll])

Parameters

foExcel Excel application object where you want to open the workbook

£sFilePath Path and filename of the file to be opened

fbReadOnly [optional] True opens the workbook as read-only (default = False)

fbVisible [optional] True specifies that the workbook window will be visible (default = True)
$sPassword [optional] The password that was used to read-protect the workbook, if any (default is none)

fsWritePassword | [optional] The password that was used to write-protect the workbook, if any (default is none)

_Excel_BookOpen will need a reference to the application object and the path and filename to the
workbook that to be opened.

Code

Chapter 15 Example 13

#include<Excel .aui>
#include<Array.aud>

f0Excel = Excel Open
fworkbook= Excel BookNew($oExcel, 3

T #include <MsgBoxConstants.aud>

global specople[3][2] = [["John",34], ["Stewve™, 23], ["Bob™,41]]
_Excel RangeWrite ($workbook,l, $people

2
B

eV e T e I Y TN YR L % R)

_Excel BookSavels($workbook, BScriptDirs™\names.xlsx™, default, True
_Excel BookClose (sworkbook
Magbox (sMB OK, "™, "Workbook closed click okay to reopen™

—_——'Ji__.’ _Excel BookOpen($oExcel, BScriptDirs™\names.xlsx™

7L

In the above example we have created a new workbook and array which we used to add data to the first
sheet in the workbook. Then we saved the workbook under the name: “names.xlsx” because the sheet
contained a bunch of names. From there we did the following:

1. This line closes the workbook that we had saved with our new name.
2. This line creates a message box that must be manually closed before the code will continue.

148 |Page
Jayme Fishman, Copyright 2015 all rights reserved

3. This line reopens the workbook that we had saved using _Excel_BookOpen.

The final task that we should look at to complete the circle is to read data from the workbook that we
just opened (ignoring for a moment that we are the ones who created the workbook in the first place
with data from our program). To do that, we need to use _Excel_RangeRead.

_Excel_RangeRead

_Excel_RangeRead, as the name would suggest, will allow us to read the contents of a specified range of
cells within an Excel workbook.

_Excel_RangeRead

Reads the value, formula or displayed text from a cell or range of cells of the specified workbook and
worksheet

$#include <Excel.au3>
_Excel RangeRead ($oWorkbook [, $vWorksheet = Default [, $vRange = Default [, $iReturn =
1 [, $bForceFunc = False]]]l])

Parameters
$oWorkbook Excel workbook object

[optional] Mame, index or worksheet object to be read. If set to keyword Default the active sheet will be
SvWarksheet

used {default = keyword Default)

[optional] Either a range object or an A1 range. If set to Default all used cells will be processed (default =
$vRange K

eyword Default)

[optional] What to return from the specified cell:
$iReturn 1 - Value (default)

2 - Formula
3 - The displayed text

[optional] True forces to use the _ArrayTranspose function instead of the Excel transpose method (default
$hForceFunc = False).

See the Remarks section for details.

The function has several parameters but only a reference to the workbook is required. The default
behavior will be to read everything and display the values in an array unless you specify a specific range
and/or that you would like to read formulae or text instead. A couple of more lines added to our
example will demonstrate the function:

149 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 15 Example 14

1 #include <MagBoxConstants.aud
2 T #include<Excel .aud>
3 #include<hrray.an3>
4 fo0Excel = Excel Openi)
3 sworkbook= Excel BookNew(SoExcel, 3)
6
7 global $fpeople[3][2] = [["John", 34], ["Stewve™, 23], ["Bob"™, 41]]
2] _Excel RangeWrite ($workbook,l, $people)
g
10 _Excel BookSavels(Sworkbook, BScriptDirs™\names.xlsx", default, True)
11 _Excel BookCloae ($workbook)
12 MagBox ($MB_OK, "", "Workbook closed click okay to reopen™)
1 13 snewworkbook= Excel BookOpen ($ocExcel, @ScriptDirs"\names.xlsx™)
4 Fleep(2000)
15 $data= Excel EangeRead (#newworkbook)
2 p——p LrrayDisplay(fdata)

In the above example, after we opened our saved workbook, we created a message box that prompted
us to re-open it. Then we used the “sleep” function to pause the script for two seconds (or 2000
milliseconds). After that, we read all the data the spreadsheet contained into an array. Then we
displayed that array. If run to completion we would see a listview with the array data that looks like
this:

Copy Data & Hdr/Row || Copy Data Orly

[3112] Exit Script

Your functions

Once you have an object identifier you can even use it to create your own functions. However, you will
need to look at the program’s APl documentation - that complexity that was so nicely hidden with the
UDF. You can use the same object identified returned with the UDF functions with your own functions.
Here is an example of a script that inserts an image into an Excel workbook:

150 | Page
Jayme Fishman, Copyright 2015 all rights reserved

Code

Chapter 15 Example 15

L = T . T B R L T % T

T T O B O o T o e o = I = T T SR SR SOy
0 1 0y O = L RY 5 O W o0] o O b L R O

4]
=}

#include<Excel .au3>

soExcelApp= Excel Cpen

soExcel = _Excel BookNew($oExcelApp

tpath = EScriptDirs™\au3logo.png™
SttargetRange=%¢oExcel . ActiveSheet.Range ("Al:D10™

B fune InsertPictureInRange (fpath, StargetBRange
s inserts a3 picture and resizes 1t to fit the Targetfells range
Dim &p, 5t, £1, Sw, £h
: import picture
tp = SoExcel.ActiveSheet.Pictures.Insert (épath
: determine positions
= With stargetRange
£t = .Top
£l = .Left
tw = .0ffszet (0, .Columns.Count).left - .Left
th = .0ffset(.Rows.Count, 0).Top - .Top
- EndWith
: position picture
= With sp
.Top = &£t
Left = £1
Width = &w
.Height = £h
EndWith
(p = "Hothing™
— EndFunc
_InsertPictureInRange ($path, $targetRange

In the above code a new workbook with its own object identified was created. Then a variable was used
to store the location of the image that we wanted to paste into the excel workbook. Next, we created a

target range that would be used as the area in the worksheet where we want to insert our picture. We
then left the nice tidy world of prepackaged Excel UDF functions and used a method that we found on
the Microsoft website as part of the Excel COM API (the application programming interface we are using
to connect to and control Excel) that accepted the path parameter to our picture and the range where

we want to paste the picture as arguments. The remaining portion of the function calls the insert

picture interface and manages the position of the image.

The result looks like this:

151 |Page

Jayme Fishman, Copyright 2015 all rights reserved

m Home Insert Page Layout Formulas Data Review

d 'l —_— |

== ¥ Calibri -1 - = =|=Z' General -

J—';EI'BIE" A AL EE=E==H $-% 9
Paste iy A = o= .0 .00

. ‘ 4 o - iE £ | AP .60 .0
Clipboard Font Alignment Mumber

NOTE: Custom functions to automate other applications through an application programming
interface (API) are an advanced topic. You will also need to study examples in the APl documentation
and convert the code provided to Autolt code. The Excel COM APl documentation can be found here:
http://msdn.microsoft.com/en-us/library/office/ff194068%28v=office.15%29.aspx.

Chapter 16 Compiling: Making your
programs into executables

To this point we have created many scripts covering a wide variety of functions. Let’s say that we
created a great script that we wanted to share with our friends so they could run it on their computers.
How would we go about doing that? They would either have to have Autolt installed on their machines
or we would have to compile our script into an executable (a stand-alone program). That process
transforms the code from human readable to machine readable instructions. It is what will allow others
to run your program even if they have never heard of Autolt. There are several different ways to do
this.

First method:

Autolt comes with a program called Aut2Exe that can be found from your start menu or within the
folder where you installed Autolt. The program allows you to select a script to compile, a location (path)
to place the compiled program, and an icon to represent the program (if you don’t have an icon or don’t
want to make one there is a default Autolt icon). There is also an option to compile for x64. That option
is used for newer Windows operating systems that are 64bits versions. However, most of the time you
can compile to 32bits and it will run on both. The Aut2Exe program looks like this:

152 |Page
Jayme Fishman, Copyright 2015 all rights reserved

http://msdn.microsoft.com/en-us/library/office/ff194068%28v=office.15%29.aspx

File Ceompression Help

©1999-2013 Jonathan Bennett & Autolt Team

http: /fonvew, autoitscript, comEutait3/

Source (Autolt .au3) | | | Browse |

Destination {.exe/.a3x) (@ .exe a3

| | | Browse |

Options

Custom Icon (Lico file) | | | Browse | | Default |

Compile for System [xa4

Convert

Above image from the Autolt help file.

Just hit the convert button after you have made all your selections.

'
— NOTE: If your script has errors they won’t be identified in the compiling process which compiles
“as-is” —so run your script and check it before you compile.

Second Method:

You can simply right click on your script and compile it. When you do this the exe will have the same
name as the script and the last used icon will be applied (because you don’t have an opportunity to
supply options / choices for these).

Third Method:

Users can also compile scripts from the command line. The command line can be seen when you run
cmd.exe on your PC. You can also run command line functions from within your script (one way to do
that is with the built in ShellExecute function (see the help file). This means that you could create your
own script to compile scripts. A full list of the command line parameters can be found in the Autoit
help file.

153 | Page
Jayme Fishman, Copyright 2015 all rights reserved

Chapter 17 Autolt Forum Rules

The Autolt forum is a fantastic place to get valuable assistance. The members are extremely helpful.
You will more than likely get a very prompt response to just about any question — as long as it conforms
to the forum rules. You can check the Autolt forum for a complete listing but they don’t tolerate
guestions about automating games (i.e. use of game “bots”), bypassing security, being disrespectful, or
any discussions about decompiling code (the practice of taking a compiled program and trying to turn it
back into a script / source code — which is usually indicative of someone trying to steal it).

You can find the forum here: https://www.autoitscript.com/forum/

There are various categories of discussion contained within the forum. Try to always post your question
in the most appropriate category. This is usually, but not always, “Autolt General Help and Support”.

Chapter 18 Links To Source Code Examples
Used In This Text

Source now included in the Appendix to this text. It may also be downloaded
as a companion file on the Autolt forum download page.

Chapter 19 Conclusion

Congratulations. If you made it this far you have learned the basic building blocks of programming. You
learned about different types of data, variables, operators, conditional logic, loops, GUls and more. At
this point you may be thinking about writing your own program. You may even have an idea for
something you want to build. Keep in mind; this was an introductory text for the basics. Your ideas may
include concepts that weren’t covered. However, knowing the information contained in this text will
give the ability to figure out just about anything with a little research.

It is also important to note that these concepts don’t necessarily gel into efficient programming
overnight. It reminds me of the old joke: “How do you get to Carnegie Hall?” whose punch line is
“Practice, practice, practice”. |suppose it would be the same as someone asking “how do | learn how to
program?”

As you approach your practice projects try to break them into pieces. Any large problem is easier to
solve when you break it into pieces — coding is no exception. You can even test pieces of code outside
your main script and then incorporate them into the larger program after you are confident they are
working.

Best wishes in your programming endeavors.

154 |Page
Jayme Fishman, Copyright 2015 all rights reserved

https://www.autoitscript.com/forum/

Appendix

This appendix contains all the source code referenced in the book. It was auto-generated to a text file

using the following script:

; create appendix files with source code
% #include <File.aud>

#include <Arrav.auld>

$codeDirectory=@5criptDirs™\book code\™ ; the directory containing the code samples
¢dirhrray= FilelistToArray($codeDirectory) ; a UDF that puts the chapter directories in an array listing

sappendixFile=FileOpen (@ScriptDirs"\appendix.txt™,2) ; the text file that will contain all the samples

s This loops the chapters, adds the separators for chapters and code
; reads the file contents and writes them all to the new text file
[=] For $a=1 to UBound ($dirkrray)-1
£filesfrray= FileListToArray($codeDirectorvssdichrray[$a]
FileWriteline (fappendixFile, "##dddidddddddddddddsdadadad4d4 48 a8888"
FileWriteline ($appendixFile, $dirRrrav[sa]
FileWriteline (fappendixFile, "#3f4d438S3¢f a3 83 dda4 3884488848388 8088
—| for £b=1 to ubound($fileshrray)-1
% IF StringInStr($fileshArray[$b],".au3")<> 0 then
FileritELiﬂE $Eppeﬂﬂixfile. R R R R R R R R R R R R RS R E R R E TR LR E A
FileWriteline ($appendixFile, sfilesArray[$b]
FileritELiﬂE $E.ppen:iixFile. S R R R R L R
texample=FileRead ($codeDirectoryseédirhrrav([fale"\"séfileshrrav|[sh]
FileWrite ($appendixFile, fexamplesfcrlf
- FileWriteLine ($appendixFile, Bcrlf) ; add some space between examples
= elae
Continueloop
- EndIf
o Hext
- Next
;s close the file so 1t can be read
FileClose ($appendixFile

This example was not called out in the text — but it is the calculation | ran when discussing scientific
notation.

HutHHH AR R H S

chapter 03 Hello Operator

HuHHH B HH

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k %k 3%k 3k 3k >k %k %k 3%k 3k %k %k %k %k 5k 3k %k %k %k *k %k %k %k k k

Examplel.au3

sk 3K sk 3k sk 3k sk sk sk sk ok sk 3k sk sk sk sk ok sk ok sk ok ok sk ok sk ok sk ok sk sk sk sk ok sk ok k
SfirstNumber = 1.826395e7

SsecondNumber =23.34e3
Sanswer=5firstNumber*SsecondNumber
ConsoleWrite(@crlf&Sanswer&@CRLF)

155 | Page
Jayme Fishman, Copyright 2015 all rights reserved

HHHHH
Chapter 04 Lets Program Something
HSHHHHEH

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k 3k %k 5k 3k 5k %k 3k >k 3k 3k 3k 3k 3k >k ok %k %k %k %k kook sk sk k ok

Examplel.au3
sk % ok 5k % 5k % ok 5k % ok % %k 5k % ok %k ok 5k % ok %k ok %k %k ok %k %k ok ok Kk k ok ok ok ok k

#include <MsgBoxConstants.au3>

MsgBox(SMB_OK,"My first program","Hello World"); this is a comment - good job

okkkkokkkkkkokokkokokkkokkkk Rk kkkk kR kK k ok ok ko

Example2.au3

3k 3k sk 3k sk 3k sk sk 3k sk 3k sk 3k sk 3k sk sk 3k sk 3k sk ok 3k sk sk sk ok sk sk skosk sk sk sk sksk sk

#include <MsgBoxConstants.au3>

SfirstMessage = "Hello "

SsecondMessage = "World"

MsgBox(SMB_OK,"My second program",SfirstMessage&SsecondMessage)

HHHHHH R
Chapter 05 conditional statements
HHHHHHH

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k sk %k 3k 3k sk %k 3k 3k 3k sk ok ok 3k >k ok sk sk ok %k kosk sk sk k ok

Examplel.au3
3k 3k ok 3k 3k 3k sk sk sk ok sk ok sk 3k sk sk sk sk sk sk sk sk 3k 3k sk sk sk ok ok ok 3k sk sk sk ok sk ok
#include <MsgBoxConstants.au3>
Sage =17
if Sage>=18 Then
MsgBox(SMB_OK,"Voting Answer","The person can vote")
Else
MsgBox(SMB_OK,"Voting Answer","The person cannot vote")
EndIf

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k %k 3k 3k 3k >k %k %k 3%k 3k %k %k %k %k 5k 3k %k %k %k k %k %k %k k k

Example2.au3
sk sk ok 3k 3k 3k sk sk sk ok sk ok sk sk sk sk sk sk ok sk sk sk 3k 3k sk sk sk ok ok ok 3k sk sk sk ok sk ok

#include <MsgBoxConstants.au3>
Sage =18
Snationality = "Canadian"

if Sage>= 18 and Snationality = "US" then

MsgBox(SMB_OK,"Voting Answer","The person can vote")
Else

MsgBox(SMB_OK,"Voting Answer","The person cannot vote")
EndIf

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3k 3k %k %k %k %k 3k 3k %k %k %k >k 5k 3k %k %k %k kok ok kkk

Jayme Fishman, Copyright 2015 all rights reserved

156 |Page

Example3.au3
3k 3k ok 3k 3k 3k sk 3k sk ok sk ok 3k 3k 3k sk sk sk ok sk sk sk 3k 3k sk sk sk ok ok ok 3k sk sk sk sk sk ok

#include <MsgBoxConstants.au3>
Sage =18
Snationality = "Canadian"

if Snationality = "US" then
if Sage>=18 then

MsgBox(SMB_OK,"Voting Answer","The person can vote")

Else
MsgBox(SMB_OK,"Voting Answer","The person cannot vote")
EndIf
Else
MsgBox(SMB_OK,"","Sorry. You are not a US citizen.")
EndIf

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k 3k %k 5k 3k sk %k 3k ok 3k sk 3k ok 3k >k ok sk sk ok %k kook sk sk k ok

Example4.au3

3k 3k ok 3k 3k 3k sk sk sk ok sk ok sk 3k sk sk sk sk ok ok sk sk 3k sk sk ok sk ok ok ok 3k sk sk sk kosk ok
#include <MsgBoxConstants.au3>
Sexpression =5

Switch Sexpression
Casel
SsMsg = "The value is 1"
Case 2
SsMsg = "The value is 2"
Case 3
SsMsg = "The value is 3"
Case Else
SsMsg = "The value is something other than 1,2,or 3"
EndSwitch

MsgBox(SMB_OK, "", SsMsg)

HUHHHHH
Chapter 06 loops
HUHHHHH

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3%k >k %k 3k 3k >k 3k 3k 3k %k %k %k %k 3k 3k 3k 5k %k %k %k >k %k %k >k kK

Examplel.au3
3k 3k sk 3k sk 3k sk sk 3k sk 3k sk 3k sk 3k sk sk 3k sk 3k sk sk 3k sk ok sk ok sk ok sk sk sk sk sk skok sk

; ConsoleWrite example
ConsoleWrite("Hello World")

Jayme Fishman, Copyright 2015 all rights reserved

157 |Page

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k %k 5k 3k 5k %k 3k >k 3k 3k 3k 3k 3k >k 5k %k %k %k %k kook sk sk k ok

Example2.au3
3k 3k 5k 3k 3k 3k sk sk sk ok sk ok 3k 3k 3k sk sk sk sk ok 3k sk 3k 3k sk sk sk ok ok ok 3k sk sk sk sk sk ok

; ConsoleWrite example
ConsoleWrite("Hello World"&@CRLF)

ok ok ok ok ok ok o o K ok ok ok sk ok ok oK K ok ok sk ok K K K ok sk ok ok K R Kk ok kK

Example3.au3
sk % ok 5k % 5k % ok 5k % ok % %k 5k % ok %k ok 5k % ok %k ok %k %k ok k ok ok ok Kk k ok ok k ok k

; ConsoleWrite example

for Sa=0to 9

ConsoleWrite("Hello World"&@CRLF)
next

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k 3k %k 5k 3k sk %k 3k ok 3k sk 3k ok 3k >k ok sk sk ok %k kook sk sk k ok

Example4.au3
3k 3k ok 3k 3k 3k sk sk sk ok sk ok sk sk sk sk sk sk sk sk sk sk 3k 3k sk sk sk ok ok ok 3k sk sk sk sk sk ok

; ConsoleWrite example

for Sa=0to 9

ConsoleWrite("This is a: " & $a & @CRLF)
next

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k sk %k 5k 3k sk %k 3k 3k 3k sk 3k 3k 3k >k 5k 3k %k ok %k koo sk sk k ok

Example5.au3
3k 3k 3k 3k 3k 3k 3k 3k 3k 5k sk 3k 3k 3k 3k 3k sk sk 3k 3k 3k 3k 3k 3k 3k 3k sk ok ok 3k %k sk sk kosk sk ok

; ConsoleWrite example

Sloops =1
forSa=0to 1
forSb=0to9
ConsoleWrite("This is a: " & Sb & @CRLF)
next
ConsoleWrite("Inner loop:"&Sloops& " set finsished" & @CRLF)
Sloops+=1
next

3k 3k 3k 3k 3k sk 3k %k 3k 3k sk 5k sk 3k 3k 3k sk sk 3k 3k 3k sk 3k sk sk ok ok sk sk sk k sk ok sk sk k ok

Example6.au3
3k 3k sk 3k sk 3k sk sk 3k sk 3k sk 3k sk 3k sk sk 3k sk 3k sk sk 3k sk ok sk ok sk ok sk sk sk sk sk skk sk

; while loop example

Sa=0

while $a<10
consolewrite("Sa is less then 10. The value is: "&$a&@CRLF)
Sa+=1

Wend

158 |Page
Jayme Fishman, Copyright 2015 all rights reserved

HEHHHEHHEHEHHE
Chapter 07 user functions
HEHHHEHHEHEHHEHEHEH

okkkokokkokkkkokokkokkkokokkkk Rk kkkkk Rk kkkk ko

Examplel.au3

5k % 5k 5k % 5k % ok 5k % ok % %k 5k % ok sk %k ok % ok %k ok ok % %k %k %k k ok Kk k ok ok kkk
; An example of a user function

#include <MsgBoxConstants.au3>

Func _myFunction()
MsgBox(SMB_OK,"User Function","Hello World")

EndFunc
_myFunction()

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k sk 3k 5k 3k sk %k 3k 3k 3k sk 3k ok 3k >k ok 3k %k ok %k kook sk sk k ok

Example2.au3

3k 3k ok 3k 3k 3k sk sk sk ok sk ok sk sk sk sk sk sk ok sk sk ok 3k 3k sk sk sk ok sk sk sk sksk sk sk k ok
; An example of a user function

#include <MsgBoxConstants.au3>

Func _mathWithAnswers(SfirstNum,SsecondNum,Soperator)

Switch Soperator
case Soperator = "+"
Sanswer=S$firstNum+SsecondNum
case Soperator = "-"
Sanswer=S$firstNum-SsecondNum
case Soperator = "*"
Sanswer=S$firstNum*SsecondNum
case Soperator ="/"
EndSwitch
MsgBox(SMB_OK,"Answer",Sanswer)
EndFunc

_mathWithAnswers(5,3,"+"

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3%k %k %k 3k 3k >k 3k 3k 3k %k %k %k 3k 3k 3k 3k 5k %k %k %k >k %k %k >k kK

Example3.au3
3k 3k sk 3k sk 3k sk sk 3k sk 3k sk 3k sk sk sk sk 3k sk 3k sk sk 3k sk ok sk ok sk ok sk sk sk sk sk skok sk

; An example of a user function
#include <MsgBoxConstants.au3>

Func _mathWithAnswers(SfirstNum,SsecondNum,Soperator)

159 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Switch Soperator
case Soperator = "+"
Sanswer=5firstNum+SsecondNum
case Soperator = "-"
Sanswer=5firstNum-SsecondNum
case Soperator = "*"
Sanswer=5firstNum*SsecondNum
case Soperator ="/"
if SsecondNum =0 Then
MsgBox(SMB_OK,"Error","You cannot divide by zero")

else
Sanswer=5firstNum/SsecondNum
EndlIf
EndSwitch
MsgBox(SMB_OK,"Answer",Sanswer)
EndFunc

_mathWithAnswers(5,0,"/")

HHHHHH R
Chapter 08 Arrays
HHHHHHH

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k sk %k 3k 3k sk %k 3k 3k 3k sk 3k ok 3k >k ok 3k sk ok %k kosk sk sk k ok

Examplel.au3
3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k 3k 3k 3k sk ok 3k 3k %k %k k kkk ok

#include <MsgBoxConstants.au3>
global SnamesArray[3]=["John","Steve","Bob"]
MsgBox(SMB_OK,"Who is second in the array?", "Answer: "&SnamesArray[1])

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k k %k 3%k 3k 3k >k %k %k 3%k 3k %k %k %k %k 5k 3k %k %k %k *k 5k %k %k k k

Example2.au3
3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k 3k 3k sk sk 3k 3k 3k 3k 3k 3k 3k 3k sk ok ok 3k %k sk sk kosksk ok

#include <MsgBoxConstants.au3>
dim Speople[3][2] = [["John",34],["Steve",23],["Bob",41]]
MsgBox(SMB_OK,"",Speople[1][0]&" is "&Speople[1][1]&" years of age")

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3%k >k %k 3k 3k >k 3k 3k 3k %k %k %k %k 3k 3k 3k 5k %k %k %k >k %k %k >k kK

Example3.au3
3k 3k sk 3k sk 3k sk sk 3k sk 3k sk 3k sk 3k sk sk 3k sk 3k sk sk 3k sk ok sk ok sk ok sk sk sk sk sk skok sk

#include <MsgBoxConstants.au3>
dim Speople[3][2] = [["John",34],["Steve",23],["Bob",41]]

for $Sa=0 to UBound(Speople)-1
MsgBox(SMB_OK,"",Speople[Sa][0]&" is "&Speople[Sa][1]&" years of age")
Next

160 |Page
Jayme Fishman, Copyright 2015 all rights reserved

HiHHEHHHEHHHH R R R

Chapter 09 GUIs

HiHHAHHH AR

okkkokokkokkkkokokkokkkokokkkk Rk kkkkk Rk kkkk ko

calc.au3
sk % 5k 5k % 5k % ok 5k % 5k % %k 5k % ok %k ok 5k % ok %k ok %k %k ok ok ok ok ok Kk k ok ok ok ok k

#include <MsgBoxConstants.au3>
; An example of a user function

Func _mathWithAnswers(SfirstNum,$secondNum,Soperator)

Switch Soperator
case Soperator ="+"
Sanswer=5firstNum+SsecondNum
case Soperator = "-"
Sanswer=5firstNum-SsecondNum
case Soperator = "*"
Sanswer=5firstNum*SsecondNum
case Soperator ="/"
if SsecondNum =0 Then

MsgBox(SMB_OK,"Error","You cannot divide by zero")

else

Sanswer=5firstNum/SsecondNum

EndIf
EndSwitch

MsgBox(SMB_OK,"Answer",Sanswer)
EndFunc

;_mathWithAnswers(5,0,"/")

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k %k 3k 3k 3k >k %k %k 3%k 3k %k %k %k %k 5k 3k %k %k %k k %k %k %k k k

Examplel.au3
sk 3K sk 3k sk 3k sk sk ok sk ok sk ok sk sk sk sk sk sk ok sk ok ok sk ok sk ok sk ok sk sk sk sk ok sk ok k
#include <GUIConstantsEx.au3>
#include <WindowsConstants.au3>
GUIcreate("Test GUI")
GUISetState(@SW_SHOW)
While 1

SnMsg = GUIGetMsg()

Switch SnMsg

Case SGUI_EVENT_CLOSE
Exit

EndSwitch
WEnd

Jayme Fishman, Copyright 2015 all rights reserved

161 |Page

3k 3k 3k 3k 3k 3k 3k %k 3k 3k %k %k 3k %k 5k 3k %k %k 3k >k 3k 3k 3k 3k 3k >k ok %k %k %k %k kook sk sk k ok

Example2.au3
sk 3k sk 3k sk 3k sk sk sk sk sk sk sk sk sk sk sk sk sk 3k sk sk sk sk sk sk ok sk ok sk sk skosk sk sk sk k
#include <GUIConstantsEx.au3>
#include <WindowsConstants.au3>
GUIcreate("Test GUI")
GUISetState(@SW_SHOW)
GUICtrlCreateButton("Push ME", 175,200,75,50)
While 1

SnMsg = GUIGetMsg()

Switch SnMsg

Case SGUI_EVENT_CLOSE
Exit

EndSwitch
WEnd

3k 3k 3k 3k 3k %k 3k %k 5k 3k 3k %k sk %k 5k 3k sk sk 3k ok 3k sk sk ok sk sk ok sk sk sk sk kok sk sk k ok

Example3.au3
3k 3k ok 3k 3k 3k sk sk sk ok sk ok 3k sk sk sk sk sk sk sk sk sk sk 3k sk sk sk ok ok ok 3k sk sk sk sk sk ok
#include <MsgBoxConstants.au3>
#include <GUIConstantsEx.au3>
#include <WindowsConstants.au3>
GUIcreate("Test GUI")
GUISetState(@SW_SHOW)
Sbutton=GUICtrICreateButton("Push ME", 175,200,75,50)
While 1
SnMsg = GUIGetMsg()
Switch SnMsg
case Sbutton
MsgBox(SMB_OK,"Button Push","You pushed me!")
Case $GUI_EVENT_CLOSE
Exit

EndSwitch
WEnd

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3%k %k %k 3k 3k >k 3k 3k 3k %k %k %k 3k 3k 3k 3k 5k %k %k %k >k %k %k >k kK

Example4.au3
3k 3k sk 3k sk 3k sk sk 3k sk 3k sk 3k sk sk sk sk 3k sk 3k sk sk 3k sk ok sk ok sk ok sk sk sk sk sk skok sk

#include <MsgBoxConstants.au3>
#tinclude <GUIConstantsEx.au3>
#tinclude <WindowsConstants.au3>

Jayme Fishman, Copyright 2015 all rights reserved

162 |Page

SguiWidth=300 ; the width of our GUI
SguiHeight=300 ; the height of our GUI

SguiBtnWidth=75 ; the width of our button
SguiBtnHeight=50 ; the heighr of our button

SinputWidth=150
SinputHeight=30

SbuttonTop=(SguiHeight/2)-(SguiBtnHeight/2)
SbuttonLeft=(SguiWidth/2)-(SguiBtnWidth/2)
SinputLeft=(SguiWidth/2)-(SinputWidth/2)
SinputTop=((SguiHeight/2)-(SguiBtnHeight/2))-(SinputHeight+10)

GUIcreate("Test GUI",SguiWidth,SguiHeight) ; using our variables to set height & width
GUISetState(@SW_SHOW)

;on the following line we are using some math and some variables to center the button by taking into
account the

; width and height of the GUI and button

Sbutton = GUICtrICreateButton ("Push ME",SbuttonLeft,SbuttonTop,SguiBtnWidth,SguiBtnHeight)
Sinput=GUICtrICreatelnput("Enter text here",SinputLeft,SinputTop,SinputWidth,SinputHeight)

While 1
SnMsg = GUIGetMsg()
Switch SnMsg
case Sbutton
MsgBox(SMB_OK,"Button Push","You pushed me!")
Case $GUI_EVENT_CLOSE
Exit

EndSwitch
WEnd

3k 3k 3k 3k 3k sk 3k %k 3k 3k sk 5k sk 3k ok 3k sk sk 3k 3k 3k sk ok sk sk ok ok sk sk ok %k sk ok sk sk k ok

Example5.au3
sk sk ok 3k 3k 3k sk sk sk ok sk ok sk sk sk sk sk sk ok sk sk sk sk 3k sk sk sk ok ok ok 3k sk sk sk ok sk ok

#include <MsgBoxConstants.au3>
#include <GUIConstantsEx.au3>
#include <WindowsConstants.au3>

SguiWidth=300 ; the width of our GUI
SguiHeight=300 ; the height of our GUI

SguiBtnWidth=75 ; the width of our button
SguiBtnHeight=50 ; the height of our button

163 |Page
Jayme Fishman, Copyright 2015 all rights reserved

SinputWidth=150
SinputHeight=30

SbuttonTop=(SguiHeight/2)-(SguiBtnHeight/2)
SbuttonLeft=(SguiWidth/2)-(SguiBtnWidth/2)
SinputLeft=(SguiWidth/2)-(SinputWidth/2)

SinputTop= ((SguiHeight/2)-(SguiBtnHeight/2))-((SinputHeight*2)+10)
Sinput2Top=SinputTop+(SinputHeight+10)

ScomboWidth=50

ScomboHeigh=30
Scomboleft=SinputLeft-(ScomboWidth+10)
ScomboTop=((SinputTop+Sinput2Top)/2)

GUIcreate("Test GUI",SguiWidth,SguiHeight) ; using our variables to set height & width
GUISetState(@SW_SHOW)
; on the following line we are using some math and some variavles to center the button by taking into
account the
; width and height of the GUI and the button
Sbutton = GUICtrICreateButton ("Push ME",SbuttonLeft,SbuttonTop,SguiBtnWidth,SguiBtnHeight)
Sinput=GUICtriCreatelnput("Enter text here",SinputLeft,SinputTop,SinputWidth,SinputHeight)
Sinput2=GUICtrlCreatelnput("Enter text here",SinputLeft,Sinput2Top,SinputWidth,SinputHeight)
Scombo=GUICtrICreateCombo("Oper",Scomboleft,5comboTop,ScomboWidth,ScomboHeigh)
While 1
SnMsg = GUIGetMsg()
Switch SnMsg
case Sbutton
Sinputcontents=GUICtrIRead(Sinput)
MsgBox(SMB_OK,"","Text from input ",Sinputcontents)
Case $SGUI_EVENT_CLOSE
Exit

EndSwitch
WEnd

3k 3k 3k 3k 3k sk 3k %k 3k 3k sk 5k sk 3k 3k 3k sk sk 3k 3k 3k sk 3k sk sk ok ok sk sk sk k sk ok sk sk k ok

Example6.au3
3k 3k sk 3k sk 3k sk sk 3k sk 3k sk 3k sk 3k sk sk 3k sk 3k sk sk 3k sk ok sk ok sk ok sk sk sk sk sk skk sk

#include <GUIConstantsEx.au3>
#include <WindowsConstants.au3>
#include <calc.au3>

SguiWidth=300 ; the width of our GUI
SguiHeight=300 ; the height of our GUI

SguiBtnWidth=75 ; the width of our button

164 |Page
Jayme Fishman, Copyright 2015 all rights reserved

SguiBtnHeight=50 ; the height of our button

SinputWidth=150
SinputHeight=30

SbuttonTop=(SguiHeight/2)-(SguiBtnHeight/2)
SbuttonLeft=(SguiWidth/2)-(SguiBtnWidth/2)
SinputLeft=(SguiWidth/2)-(SinputWidth/2)

SinputTop= ((SguiHeight/2)-(SguiBtnHeight/2))-((SinputHeight*2)+10)
Sinput2Top=SinputTop+(SinputHeight+10)

ScomboWidth=50

ScomboHeigh=30
Scomboleft=SinputLeft-(ScomboWidth+10)
ScomboTop=((SinputTop+Sinput2Top)/2)

GUIcreate("Test GUI",SguiWidth,SguiHeight) ; using our variables to set height & width
GUISetState(@SW_SHOW)

; on the following line we are using some math and some variavles to center the button by taking into
account the

; width and height of the GUI and the button

Sbutton = GUICtrICreateButton ("Push ME",SbuttonLeft,SbuttonTop,SguiBtnWidth,SguiBtnHeight)
Sinput=GUICtriCreatelnput("",SinputLeft,SinputTop,SinputWidth,SinputHeight)
Sinput2=GUICtrlCreatelnput("",SinputLeft,Sinput2Top,SinputWidth,SinputHeight)
Scombo=GUICtrICreateCombo("Oper",Scomboleft,ScomboTop,ScomboWidth,5comboHeigh)
GUICtriSetData(-1, "+|-|/|*", "+"

;GUICtrICreatelnput(
While 1
SnMsg = GUIGetMsg()
Switch SnMsg
case Sbutton
SfirstNum=GUICtrIRead(Sinput)
SsecondNum=GUICtrIRead(Sinput2)
Soperator=GUICtrlIRead(Scombo)
_mathWithAnswers($firstNum,SsecondNum,Soperator)
Case SGUI_EVENT_CLOSE
Exit

EndSwitch
WEnd

HEHTH TS R S A T A
Chapter 10 Koda
HEHHHEH A

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k %k %k 3k 3k %k %k %k %k 3k %k %k %k %k >k 3k 3k %k %k kk sk kkk

165 |Page
Jayme Fishman, Copyright 2015 all rights reserved

calc.au3

3k 3k ok 3k 3k 3k sk 3k sk ok sk ok 3k 3k 3k sk sk sk ok sk sk sk 3k 3k sk sk sk ok ok ok 3k sk sk sk sk sk ok
#include <MsgBoxConstants.au3>

; An example of a user function

Func _mathWithAnswers(SfirstNum,$secondNum,Soperator)

Switch Soperator
case Soperator = "+"
Sanswer=5firstNum+SsecondNum
case Soperator ="-"
Sanswer=5firstNum-SsecondNum
case Soperator = "*"
Sanswer=$firstNum*SsecondNum
case Soperator ="/"
if SsecondNum = 0 Then
MsgBox(SMB_OK,"Error","You cannot divide by zero")
else
Sanswer=5firstNum/SsecondNum
EndIf
EndSwitch

MsgBox(SMB_OK,"Answer",Sanswer)
EndFunc

;_mathWithAnswers(5,0,"/")

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k %k 3k 3k 3k >k %k %k 3%k 3k %k %k %k >k 5k 3k %k %k %k %k %k %k %k k k

Examplel.au3

3k 3k sk 3k sk 3k sk sk sk sk 3k sk 3k sk 3k sk sk 3k sk 3k sk ok sk sk sk sk ok sk ok skosk sk sk sk skosk sk
#include <ButtonConstants.au3>

#include <ComboConstants.au3>

#include <EditConstants.au3>

#include <GUIConstantsEx.au3>

#include <WindowsConstants.au3>

#tinclude <calc.au3>

#Region ### START Koda GUI section ### Form=c:\documents and settings\administrator\my
documents\book\learn to program book\learn to program book\programs\chepter
10\kodacalculatorgui.kxf

SForm1_1 = GUICreate("Form1", 301, 301, 188, 121)

Sinput = GUICtrlCreatelnput("", 77, 55, 150, 21)

Sbutton = GUICtrICreateButton("Push ME", 113, 125, 75, 50)

Slnput2 = GUICtrlCreatelnput("", 77, 95, 150, 21)

Scombo = GUICtrlCreateCombo("", 17, 75, 50, 30, BitOR(SCBS_DROPDOWN,SCBS_AUTOHSCROLL))
GUICtrISetData(-1, "+|-|/|*")

GUISetState(@SW_SHOW)

166 |Page
Jayme Fishman, Copyright 2015 all rights reserved

H#EndRegion ### END Koda GUI section ###

;GUICtrICreatelnput(
While 1
SnMsg = GUIGetMsg()
Switch SnMsg
case Sbutton
SfirstNum=GUICtrlRead(Sinput)
SsecondNum=GUICtrIRead(Sinput2)
Soperator=GUICtrlIRead(Scombo)
_mathWithAnswers($firstNum,$secondNum,Soperator)
Case SGUI_EVENT_CLOSE
Exit

EndSwitch
WEnd

HHHHHH R
Chapter 11 Strings
HHHHHHH

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k sk %k 3k 3k sk %k 3k 3k 3k sk ok ok 3k >k ok sk sk ok %k kosk sk sk k ok

Examplel.au3

3k 3k ok 3k 3k 3k sk sk sk ok sk ok sk 3k sk sk sk sk sk sk sk sk 3k 3k sk sk sk ok ok ok 3k sk sk sk ok sk ok

#include <MsgBoxConstants.au3>

SmyString = "The quick brown fox jumped over the log"
SfoxPosition = StringInStr(SmyString,"fox")
MsgBox(SMB_OK,"",SfoxPosition)

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k k %k 3%k 3k 3k >k %k %k 3%k 3k %k %k %k %k 5k 3k %k %k %k *k 5k %k %k k k

Example2.au3

3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k 3k 3k sk sk 3k 3k 3k 3k 3k 3k 3k 3k sk ok ok 3k %k sk sk kosksk ok

#include <MsgBoxConstants.au3>

SmyString = "The quick brown fox jumped over the log"
SmysStringlLen = StringLen(SmyString)
MsgBox(SMB_OK,"",SmyStringLen)

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3k %k %k 3k 3k >k 3k 3k 3k %k %k %k >k 3k 3k 3k 5k %k %k %k >k %k %k >k kK

Example3.au3

3k 3k sk 3k sk 3k sk sk 3k sk 3k sk 3k sk sk sk sk 3k sk 3k sk sk 3k sk ok sk ok sk ok sk sk sksk sk skk k

#include <MsgBoxConstants.au3>

SmysString = "The quick brown fox jumped over the log"
SnewsString=StringReplace(SmysString,"fox","dog")
MsgBox(SMB_OK,"",SnewString)

Jayme Fishman, Copyright 2015 all rights reserved

167 |Page

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k 3k %k 3k 3k 5k %k 3k >k 3k 3k 3k 3k 3k >k ok %k %k k %k kook sk sk k ok

Example4.au3

sk 3k sk 3k sk 3k sk sk sk sk sk sk sk sk sk sk sk sk sk 3k sk sk sk sk sk sk ok sk ok sk ok skosk sk sk sk sk

#include<Array.au3>

Snames=" Bob, Jane, Sammy, David, Jonah, Billy, Duke, Lizzie, Greg'
nn

SnameArray=StringSplit(Snames,",")
_ArrayDisplay(SnameArray,"Names Array")

ok kokokkkkkkokokkokkkokokkkk Rk kokkkk Rk kkkkkk

Example5.au3

sk % 5k 5k % 5k % ok 5k % ok % %k 5k % ok %k ok 5k % ok %k ok sk %k ok k ok ok ok Kk k ok ok ok ok k

#include<Array.au3>

Snames=" Bob, Jane, Sammy, David, Jonah, Billy, Duke, Lizzie, Greg'
nn

SnameArray=StringSplit(Snames,",")
;_ArrayDisplay(SnameArray,"Names Array")

for Sa=1 to UBound(SnameArray)-1

ConsoleWrite(@crlf&"This is a special message for"&SnameArray[$al&@crlf)

Next

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k sk %k 3k 3k sk %k 3k 3k 3k sk 3k 3k 3k >k ok 3k %k ok %k kook sk sk k ok

Example6.au3

3k 3k ok 3k 3k 3k sk sk sk ok sk ok sk sk sk sk sk sk ok ok 3k sk 3k sk sk ok sk ok sk sk sk sk sk sk kok ok

#include <MsgBoxConstants.au3>

SmysString = "The quick brown fox jumped over the log"
SfoxPosition = StringInStr(SmyString,"fox")
StrimmedString=StringTrimLeft(SmyString,SfoxPosition+3)
MsgBox(SMB_OK,"",StrimmedString)

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k k %k 3k 3k 3k %k %k %k %k 3k %k %k %k %k >k 3k 3k %k %k kk %k %k k k

Example7.au3

3k 3k 3k 3k 3k 3k 3k 3k 3k ok sk 3k 3k 3k 3k 3k sk sk 3k 3k 3k 3k 3k 3k 3k 3k sk ok ok 3k %k sk sk kosk sk ok

#include <MsgBoxConstants.au3>

SmyString = "The quick brown fox jumped over the log"
SsearchTerm="fox"

SsearchtermLen=StringLen($SsearchTerm)

SfoxPosition = StringInStr(SmyString,SsearchTerm)
StrimmedString=StringTrimLeft(SmyString,SfoxPosition+Ssearchtermlen)
MsgBox(SMB_OK,"",StrimmedString)

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3%k %k %k 3k 3k >k 3k 3k 3k %k %k %k 3k 3k 3k 3k 5k %k %k %k >k %k %k >k kK

Example8.au3

3k 3k sk 3k sk 3k sk sk 3k sk 3k sk 3k sk sk sk sk 3k sk 3k sk sk 3k sk ok sk ok sk ok sk sk sk sk sk skok sk

#include <MsgBoxConstants.au3>

SmyString = "The quick brown fox jumped over the log"
SnewString=StringTrimRight(SmyString,3)
MsgBox(SMB_OK,"",SnewString)

Jayme Fishman, Copyright 2015 all rights reserved

168 |Page

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k %k 5k 3k 5k %k 3k >k 3k 3k 3k 3k 3k >k 5k %k %k %k %k kook sk sk k ok

Example9.au3
3k 3k 5k 3k 3k 3k sk sk sk ok sk ok 3k 3k 3k sk sk sk sk ok 3k sk 3k 3k sk sk sk ok ok ok 3k sk sk sk sk sk ok

#include <MsgBoxConstants.au3>
SmysString = "The quick brown fox jumped over the log"

StrimmedString=StringLeft(SmyString,StringLen(SmyString)-3)

MsgBox(SMB_OK,"",StrimmedString)

HHHHEHEHEHEHE A
Chapter 12 files and directories
HHHEHEHEHEHEHEHE

okkkokokkkokkokokokkokkkkokkkk Rk kkkkk Rk kkk ok ko

Example01.au3

3k 3k 3k 3k 3k 3k 3k %k 3%k 3k 3k 3k %k %k 3%k 3k 3k %k %k %k 3%k 3k %k %k %k %k 5k 3k %k %k %k %k 5k %k %k k k

SmyFile = FileOpen(@ScriptDir&"\myfile.txt",2)

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k sk 3k 5k 3k sk %k 3k 3k 3k sk 3k ok 3k >k ok 3k %k ok %k kook sk sk k ok

Example02.au3

3k 3k ok 3k 3k 3k sk sk sk ok sk ok sk 3k sk sk sk sk sk sk sk 3k 3k 3k sk sk sk ok ok ok 3k sk sk sk sk sk ok

SmyFile = FileOpen(@ScriptDir&"\myfile.txt",2)
SmyString = "The quick brown fox jumped over the log'
FileWrite(SmyFile,SmyString)

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3%k 3k %k %k %k %k 5k 3k %k %k %k *k%k %k %k k k

Example03.au3

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k k %k 3k 3k 3k >k %k %k 3%k 3k %k %k %k >k 5k 3k %k %k %k *k%k %k %k k k

SmyFile = FileOpen(@ScriptDir&"\myfile.txt",2)

Snames=" Bob, Jane, Sammy, David, Jonah, Billy, Duke, Lizzie, Greg"

SnameArray=StringSplit(Snames,",")

for Sa=1 to UBound(SnameArray)-1

FileWrite(SmyFile, @crlf&"This is a special message for"&SnameArray[Sa]&@crlf)

Next
FileClose(SmyFile)

3k 3k 3k 3k 3k 5k %k %k 3k 3k sk %k sk %k 3k ok sk sk 3k 3k 3k sk sk ok sk >k ok sk sk sk sk kook sk sk k ok

Example04.au3

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3k %k %k 3k 3k >k 3k 3k 3k %k %k %k >k 3k 3k 3k 5k %k %k %k >k %k %k >k kK

#include <MsgBoxConstants.au3>
Sfileln = FileRead(@ScriptDir&"\myfile.txt")
MsgBox(SMB_OK,"",Sfileln)

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3k 3k %k sk %k >k 3%k 3k %k %k %k >k 5k 3k %k %k %k kok %k %k k k

Example05.au3

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3k 3k %k %k %k %k 3k 3k %k %k %k >k 5k 3k %k %k %k kok ok kkk

Jayme Fishman, Copyright 2015 all rights reserved

169 |Page

FileCopy (@ScriptDir&"\myfile.txt",@DesktopDir)

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 5k %k 3k >k 5k 3k %k %k 3k >k 3k 3k 3k ok 3k >k ok %k %k %k %k kosk sk sk k ok

Example06.au3

okkkokokkokkkkokokkokkkokokkkk Rk kkkkk Rk kkkk ko

ile = FileOpenDialog("Select File",@ScriptDir,"Text files (*.txt
Sfile = FileOpenDialog("Select File",@ScriptDir,"Text files (*.txt)")

dok kK ok ok ok ok ok koK ok ok sk ok ok K kok ok kR Rk ok ok ok ok kKKK ok ok kKK

Example07.au3

okkkkokkkkkkokokkokokkkokkkk Rk kkkk kR kK k ok ok ko

DirCreate(@ScriptDir&"\new folder\")

3k 3k 3k 3k 3k 3k 3k %k 3%k 3k 3k 3k %k %k 3%k 3k 3k %k %k %k 3%k 3k %k %k %k %k 5k 3k %k %k %k %k 5k %k %k k k

Example08.au3

Sk 3K sk 3k sk 3k sk sk sk sk ok sk sk sk sk sk sk sk sk 3k sk sk ok sk ok sk ok sk ok sk sk sk sk sk sk sk k
#include <MsgBoxConstants.au3>
Ssize=DirGetSize(@ScriptDir&"\new folder\")
MsgBox(SMB_OK,"",Ssize)

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k sk %k 3k 3k sk %k 3k 3k 3k sk 3k 3k 3k >k ok 3k %k ok %k kook sk sk k ok

Example09.au3

3k 3k ok 3k 3k 3k sk sk sk ok sk ok 3k sk sk sk sk sk sk sk sk sk sk 3k sk sk sk ok ok ok 3k sk sk sk sk sk ok

#include <MsgBoxConstants.au3>

FileCopy (@ScriptDir&"\myfile.txt",@ScriptDir&"\new folder\")
Ssize=DirGetSize(@ScriptDir&"\new folder\")
MsgBox(SMB_OK,"",Ssize)

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k %k 3k 3k 3k >k %k %k 3k 3k %k %k %k >k 5k 3k %k %k %k %k 5k %k %k k k

Example10.au3

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k k %k 3%k 3k 3k >k %k %k 3%k 3k %k %k %k %k 5k 3k %k %k %k *k 5k %k %k k k

DirMove(@ScriptDir&"\new folder\", @ScriptDir&"\new name\",1)

3k 3k 3k 3k 3k sk 3k %k 3k 3k sk 5k sk 3k 3k 3k sk sk 3k 3k 3k sk sk sk 3k ok 5k sk sk sk sk ok ok %k sk %k k

Examplell.au3

3k 3k 3k 3k 3k sk 3k %k 3k 3k sk 5k sk 3k 3k 3k sk sk 3k 3k 3k sk 3k sk sk ok ok sk sk sk k sk ok sk sk k ok

DirRemove(@ScriptDir&"\new name\",1)

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3%k %k %k 3k 3k >k 3k 3k 3k %k %k %k 3k 3k 3k 3k 5k %k %k %k >k %k %k >k kK

Examplel2.au3

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3k >k %k 3k 3k >k 3k 3k 3k %k %k %k >k 3k 3k 3k 5%k %k %k %k >k %k %k >k kK

#include <MsgBoxConstants.au3>
MsgBox(SMB_OK,"",DriveSpaceFree("c:\"))

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3k 3k %k %k %k %k 3k 3k %k %k %k >k 5k 3k %k %k %k kok ok kkk

Jayme Fishman, Copyright 2015 all rights reserved

170 |Page

Examplel3.au3

sk 3k sk 3k sk 3k sk sk sk sk sk sk sk sk sk sk sk sk sk 3k sk sk sk sk sk sk ok sk ok sk sk skosk sk sk sk k
#include<Array.au3>
SdriveArray=DriveGetDrive("ALL")
_ArrayDisplay(SdriveArray)

HHHHHEHEHEHEHE A
Chapter 13 Macros
HHHHEHEHEHEHE A

ok kokokkkokkkokokkokkkokokkkk Rk ok okkkk Rk kk ok ok ko

Examplel.au3

sk sk sk ok ok sk ok sk ok ok sk sk sk ok ok ok sk ok ok ok sk ok ok sk ok sk ok ok ok ok ok sk k ok Rk ok
#include <MsgBoxConstants.au3>
MsgBox(SMB_OK,"",@0SVersion)

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k 3k %k 5k 3k sk %k 3k ok 3k sk 3k ok 3k >k ok sk sk ok %k kook sk sk k ok

Example2.au3

3k 3k ok 3k 3k 3k sk sk sk ok sk ok sk 3k sk sk sk sk ok ok sk sk sk 3k sk ok sk ok ok ok 3k sk sk sk sk sk ok

#include <MsgBoxConstants.au3>
MsgBox(SMB_OK,"", @ MON&"/"&@MDAY&"/"&@YEAR)

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k sk %k 3k 3k sk %k 3k 3k 3k sk ok ok 3k >k ok sk sk ok %k kosk sk sk k ok

Example3.au3

3k 3k ok 3k 3k 3k sk sk sk ok sk ok sk 3k sk sk sk sk sk sk sk sk 3k 3k sk sk sk ok ok ok 3k sk sk sk ok sk ok

#include <MsgBoxConstants.au3>

MsgBox(SMB_OK,"", @MON&"/"&@MDAY&"/"& @YEAR&" Timestamp:
"& @HOUR&":"&@MIN&":"& @SEC)

HutHHH BB
Chapter 14 User Defined Functions
HutHHH AR H S

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k %k 3k 3k 3k >k %k %k 3%k 3k %k %k %k %k 5k 3k %k %k %k k %k %k %k k k

Examplel.au3

3k sk ok 3k 3k 3k sk sk sk ok sk ok sk sk sk sk sk sk ok sk sk sk sk 3k sk sk sk ok ok ok sk sk sk sk %k k k

#include<Array.au3>

dim Sfruits[10]=["Grapefruit", "Banana", "Watermelon", "Grape", "Apple", "Guava","Star fruit",
"Mango", "Coconut", "Blueberry"]

_ArrayDisplay(Sfruits)

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3%k %k %k 3k 3k >k 3k 3k 3k %k %k %k 3k 3k 3k 3k 5k %k %k %k >k %k %k >k kK

Example2.au3

3k 3k sk 3k 3k sk sk 3k 3k 3k sk sk 3k 3k sk sk sk 3k sk sk sk 3k sk sk sk 3k sk sk sk 3k ok sk sk sk sk k sk

#include<Array.au3>

#include <MsgBoxConstants.au3>

dim Sfruits[10]=["Grapefruit", "Banana", "Watermelon", "Grape", "Apple", "Guava","Star fruit",
"Mango", "Coconut", "Blueberry"]

171 |Page
Jayme Fishman, Copyright 2015 all rights reserved

SgrapePos=_ArraySearch(Sfruits,"grape")
MsgBox(SMB_OK,"Position of grape",SgrapePos)

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 5k %k 3k >k 5k 3k %k %k 3k >k 3k 3k 3k ok 3k >k ok %k %k %k %k kosk sk sk k ok

Example3.au3

sk sk sk ok ok sk ok sk ok ok sk sk sk ok ok sk sk ok ok ok sk ok ok sk ok sk ok ok ok ok ok sk k ok sk ok ok

#include<Array.au3>

dim Sfruits[10]=["Grapefruit", "Banana", "Watermelon", "Grape", "Apple", "Guava","Star fruit",
"Mango", "Coconut", "Blueberry"]

_ArraySort(Sfruits)

_ArrayDisplay(Sfruits)

okkkokokkkokkokokokkokkkkokkkk Rk kkkkk Rk kkk ok ko

Example4.au3

3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k sk 5k 3k 3k 3k 3k 3k 3k 3k sk ok 3k 3k %k %k k kk sk k
#include<Array.au3>

#include<File.au3>
SdirArray=_FileListToArray(@WindowsDir,"*",2)
_ArrayDisplay(SdirArray,"Windows Directories")

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k sk %k 3k 3k sk %k 3k 3k 3k sk ok ok 3k >k ok sk sk ok %k kosk sk sk k ok

Example5.au3

3k 3k ok 3k 3k 3k sk sk sk ok sk ok sk 3k sk sk sk sk sk sk sk sk 3k 3k sk sk sk ok ok ok 3k sk sk sk ok sk ok
#include<File.au3>
_FilePrint(@ScriptDir&"\myfile.txt")

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k k %k 3k 3k 3k >k %k %k 3%k 3k %k %k %k >k 5k 3k %k %k %k *k%k %k %k k k

Example6.au3

3k sk sk 3k 3k sk sk sk 3k 3k sk sk sk %k sk sk sk 5k sk sk sk 3k sk sk sk sk %k sk sk ok ok %k sk k ok %k k-
#include <SQLite.au3>

#include <SQLite.dll.au3>

Local ShQuery, SaRow

_SQlite_Startup()

ConsoleWrite("_SQLlite_LibVersion=" & _SQLite_LibVersion() & @CRLF)

_SQlite_Open()

; Without SsCallback it's a resultless statement

_SQlite_Exec(-1, "Create table tbiTest (a,b int,c single not null);" & _
"Insert into tbiTest values ('1',2,3);" & _
"Insert into tbITest values (Null,5,6);")

Local $d = _SQLite_Exec(-1, "Select rowid,* From tbITest", " _cb"); _cb will be called for each row
Func _cb($SaRow)
For Ss In SaRow

ConsoleWrite(Ss & @TAB)

172 |Page
Jayme Fishman, Copyright 2015 all rights reserved

Next

ConsoleWrite(@CRLF)

; Return SSQLITE_ABORT ; Would Abort the process and trigger an @error in _SQLite_Exec()
EndFunc ;==> cb
_SQLite_Close()
_SQLite_Shutdown()

; Output:
;112 3
;2 56

okkkokokkkokkokokokkokkkkokkkk Rk kkkkk Rk kkk ok ko

Example7.au3

3k 3k sk 3k sk 3k sk sk 3k sk 3k sk 3k sk 3k sk sk 3k sk 3k sk ok 3k sk sk sk ok sk sk skosk sk sk sk skk sk
#include <SQLite.au3>

#include <SQLite.dll.au3>

Local ShQuery, SaRow

_SQLite_Startup()

ConsoleWrite("_SQLite_LibVersion=" & _SQLite_LibVersion() & @CRLF)
_SQlite_Open(@ScriptDir&"\example.db")

Local Sd = _SQLite_Exec(-1, "Select rowid,* From tbITest", " cb"); _cb will be called for each row

Func _cb($aRow)

For Ss In SaRow

ConsoleWrite(Ss & @TAB)

Next

ConsoleWrite(@CRLF)

; Return SSQLITE_ABORT ; Would Abort the process and trigger an @error in _SQLite_Exec()
EndFunc ;==> cb
_SQLlite_Close()
_SQLite_Shutdown()

; Output:
;11 2 3
;2 56

HEHHHHHH R
Chapter 15 Automating prgrams
HEBHHHHH R

3k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k >k %k 3k 3k >k 3k 3k 3k %k %k %k >k 3k 3k 3k 5%k %k %k %k >k %k %k >k kK

Example0l.au3

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3k %k %k 3k 3k >k 3k 3k 3k %k %k %k >k 3k 3k 3k 5k %k %k %k >k %k %k >k kK

Snotepad=WinActivate("Untitled - Notepad")
sleep(2000)
Scalculator=WinActivate("Calculator")

173 |Page
Jayme Fishman, Copyright 2015 all rights reserved

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k %k 5k 3k 5k %k 3k >k 3k 3k 3k 3k 3k >k 5k %k %k %k %k kook sk sk k ok

Example02.au3

sk 3k sk 3k sk 3k sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk ok sk ok sk ok skosk sk sk sk k
Snotepad=WinActivate("Untitled - Notepad")
sleep(2000)
Scalculator=WinActivate("Calculator")

WinClose($notepad)

dok kK okok ok ok kR okok sk k ok okok sk kk Rk ok ok ok k kKRR ok k ok kK

Example03.au3

sk % 5k 5k % 5k % ok 5k % ok % %k 5k % ok %k ok 5k % ok %k ok %k %k ok k %k ok ok Kk k ok ok kK k
Snotepad=WinActivate("Untitled - Notepad")
WinWaitActive(Snotepad,"",3)
Send("Learning about automation is fun")

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k sk 3k 5k 3k sk %k 3k 3k 3k sk 3k ok 3k >k ok 3k %k ok %k kook sk sk k ok

Example04.au3

sk 3K sk 3k sk 3k sk sk sk sk ok sk 3k sk sk sk sk sk sk 3k sk sk ok sk ok sk ok sk ok sk sk sk sk sk sk k
run("notepad.exe")

WinWaitActive("Untitled - Notepad")
Send("Learning about automation is fun")

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3%k 3k %k %k %k %k 5k 3k %k %k %k *k%k %k %k k k

Example05.au3

3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k sk sk 3k 3k 3k 3k 3k 3k 3k sk ok ok 3k %k sk sk ksk sk ok
run("notepad.exe")

WinWaitActive("Untitled - Notepad")
Send("!F")

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3%k 3k %k %k %k %k 5k 3k %k %k %k *k%k %k %k k k

Example06.au3

3k 3k ok 3k 3k 3k sk sk sk ok sk ok sk sk sk sk sk sk ok sk sk sk sk 3k sk sk sk ok ok sk 3k sk sk sk ok sk ok

; First we opened an instance of calculator

run("calc.exe")

Scalc=WinWaitActive("Calculator") ; activates the window

; Panes

ScontrolTopPane = "[CLASS:Static; INSTANCE:2]" ; pane above numbers
ScontrolNumberPane = "[CLASS:Static; INSTANCE:4]"; numbers pane

; update panes with our text

ControlSetText("Calculator","",ScontrolTopPane,"Automate with Autolt!")

ControlSetText("Calculator","",ScontrolNumberPane,"Yeah!!!")

174 |Page
Jayme Fishman, Copyright 2015 all rights reserved

;Buttons

ScontrolOneBtn = "[CLASS:Button; INSTANCE:5]"; one button
ScontrolTwoBtn = "[CLASS:Button; INSTANCE:11]"; two button
ScontrolThreeBtn = "[CLASS:Button; INSTANCE:16]"; three button
ScontrolFourBtn = "[CLASS:Button; INSTANCE:4]"; four button
ScontrolFiveBtn = "[CLASS:Button; INSTANCE:10]"; five button
ScontrolSixBtn = "[CLASS:Button; INSTANCE:15]"; six button
ScontrolSevenBtn = "[CLASS:Button; INSTANCE:3]"; seven button
ScontrolEightBtn = "[CLASS:Button; INSTANCE:9]"; eight button
ScontrolNineBtn = "[CLASS:Button; INSTANCE:14]"; nine button
ScontrolZeroBtn = "[CLASS:Button; INSTANCE:6]"; nine button

; an array of the buttons that we can loop through to update them all

dim
SbtnArray[10]=[ScontrolOneBtn,ScontrolTwoBtn,ScontrolThreeBtn,ScontrolFourBtn,ScontrolFiveBtn,Sc
ontrolSixBtn,ScontrolSevenBtn,ScontrolEightBtn,ScontrolNineBtn,ScontrolZeroBtn]

Stext="A" ; used to update all buttons

; The loop that sets all the buttons to "A"

for $a=0 to ubound(SbtnArray)-1
ControlSetText("Calculator","",SbtnArray[$a],Stext)
next

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k sk %k 5k 3k sk %k 3k 3k 3k sk 3k 3k 3k >k 5k 3k %k ok %k koo sk sk k ok

Example07.au3

3k 3k 3k 3k 3k 3k 3k 3k 3k 5k sk 3k 3k 3k 3k 3k sk sk 3k 3k 3k 3k 3k 3k 3k 3k sk ok ok 3k %k sk sk kosk sk ok

; First we opened an instance of calculator

run("calc.exe")

Scalc=WinWaitActive("Calculator") ; activates the window

; Panes

ScontrolTopPane = "[CLASS:Static; INSTANCE:2]" ; pane above numbers
ScontrolNumberPane = "[CLASS:Static; INSTANCE:4]"; numbers pane

; update panes with our text

ControlSetText("Calculator","",ScontrolTopPane,"Automate with Autolt!")

ControlSetText("Calculator","",ScontrolNumberPane,"Yeah!!!")

;Buttons

ScontrolOneBtn = "[CLASS:Button; INSTANCE:5]"; one button
ScontrolTwoBtn = "[CLASS:Button; INSTANCE:11]"; two button
ScontrolThreeBtn = "[CLASS:Button; INSTANCE:16]"; three button
ScontrolFourBtn = "[CLASS:Button; INSTANCE:4]"; four button
ScontrolFiveBtn = "[CLASS:Button; INSTANCE:10]"; five button
ScontrolSixBtn = "[CLASS:Button; INSTANCE:15]"; six button
ScontrolSevenBtn = "[CLASS:Button; INSTANCE:3]"; seven button
ScontrolEightBtn = "[CLASS:Button; INSTANCE:9]"; eight button
ScontrolNineBtn = "[CLASS:Button; INSTANCE:14]"; nine button

175 | Page
Jayme Fishman, Copyright 2015 all rights reserved

ScontrolZeroBtn = "[CLASS:Button; INSTANCE:6]"; nine button

; an array of the buttons that we can loop through to update them all

dim
SbtnArray[10]=[ScontrolOneBtn,ScontrolTwoBtn,ScontrolThreeBtn,ScontrolFourBtn,ScontrolFiveBtn,Sc
ontrolSixBtn,ScontrolSevenBtn,ScontrolEightBtn,ScontrolNineBtn,ScontrolZeroBtn]

Stext="A" ; used to update all buttons

; The loop that sets all the buttons to "A"

for $a=0 to ubound(SbtnArray)-1
ControlSetText("Calculator","",SbtnArray[$a],Stext)
next

sleep (2000) ; small delay to view original results

send("12") ; invoke scientific calc mode ALT + 2 shortcut
SradiansRadio="[CLASS:Button; INSTANCE:30]" ; the radians radio button Au3Info
WinWaitActive("Calculator"); wait for new mode to become active

ControlCommand("Calculator","",SradiansRadio,"check"); select radian radio

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k 5k sk %k 5k 3k sk %k 3k ok 3k sk 3k 3k 3k >k ok 3k %k %k %k kosk sk sk k ok

Example08.au3

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k sk %k 3k 3k sk %k 3k 3k 3k sk ok ok 3k >k ok sk sk ok %k kosk sk sk k ok

Sleep (2000)

SmousePos=MouseGetPos()
SmouseX=SmousePos[0]
SmouseY=SmousePos[1]
mousemove(SmouseX+100,SmouseY+100)

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k %k 3k 3k 3k >k %k %k 3k 3k %k %k %k >k 5k 3k %k %k %k %k 5k %k %k k k

Example09.au3

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3%k 3k 3k >k %k %k 3%k 3k %k %k %k %k 5k 3k %k %k %k *k %k %k %k kk

#include<Excel.au3>
SoExcel = _Excel_Open()

3k 3k 3k 3k 3k sk 3k %k 3k 3k sk 5k sk 3k 3k 3k sk sk 3k 3k 3k sk 3k sk sk ok ok sk sk sk k sk ok sk sk k ok

Example10.au3

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3%k >k %k 3k 3k >k 3k 3k 3k %k %k %k %k 3k 3k 3k 5k %k %k %k >k %k %k >k kK

#include<Excel.au3>
SoExcel = _Excel_Open()
Sworkbook=_Excel_BookNew(SoExcel, 3)

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3k 3k %k sk %k >k 3%k 3k %k %k %k >k 5k 3k %k %k %k kok %k %k k k

Examplell.au3

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3k 3k %k %k %k %k 3k 3k %k %k %k >k 5k 3k %k %k %k kok ok kkk

176 |Page
Jayme Fishman, Copyright 2015 all rights reserved

#include<Excel.au3>
#include<Array.au3>

SoExcel = _Excel_Open()
Sworkbook=_Excel_BookNew(SoExcel, 3)

global Speople[3][2] = [["John",34],["Steve",23],["Bob",41]]
_Excel_RangeWrite(Sworkbook,1,Speople)

ok kokokkkkkkokokkokkkokokkkk Rk kokkkk Rk kkkkkk

Examplel2.au3

sk sk sk ok ok 5k ok sk ok ok sk sk sk ok ok sk sk ok ok ok sk ok ok ok ok sk ok ok ok ok ok kR ok Rk ok
#include<Excel.au3>

#include<Array.au3>

SoExcel = _Excel_Open()
Sworkbook=_Excel_BookNew(SoExcel, 3)

global Speople[3][2] = [["John",34],["Steve",23],["Bob",41]]
_Excel _RangeWrite(Sworkbook,1,Speople)

__Excel_BookSaveAs(Sworkbook, @ScriptDir&'"\names.xIsx",default, True)

_Excel_BookClose(Sworkbook)

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k sk %k 5k 3k sk %k 3k 3k 3k sk 3k 3k 3k >k 5k 3k %k ok %k koo sk sk k ok

Examplel3.au3

3k 3k 3k 3k 3k 3k 3k 3k 3k 5k sk 3k 3k 3k 3k 3k sk sk 3k 3k 3k 3k 3k 3k 3k 3k sk ok ok 3k %k sk sk kosk sk ok
#include <MsgBoxConstants.au3>
#include<Excel.au3>

#include<Array.au3>

SoExcel = _Excel_Open()
Sworkbook=_Excel_BookNew(SoExcel, 3)

global Speople[3][2] = [["John",34],["Steve",23],["Bob",41]]
_Excel_RangeWrite(Sworkbook,1,Speople)

_Excel_BookSaveAs(Sworkbook, @ScriptDir&'"\names.xIsx",default, True)

_Excel_BookClose(Sworkbook)

MsgBox(SMB_OK,"","Workbook closed click okay to reopen")

_Excel_BookOpen(SoExcel, @ScriptDir&"\names.xIsx")

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3%k %k %k 3k 3k >k 3k 3k 3k %k %k %k 3k 3k 3k 3k 5k %k %k %k >k %k %k >k kK

Examplel4.au3

3k 3k sk 3k sk 3k sk sk 3k sk 3k sk 3k sk sk sk sk 3k sk 3k sk sk 3k sk ok sk ok sk ok sk sk sk sk sk skok sk
#include <MsgBoxConstants.au3>
#include<Excel.au3>

#include<Array.au3>

SoExcel = _Excel_Open()

Jayme Fishman, Copyright 2015 all rights reserved

177 |Page

Sworkbook=_Excel_BookNew(SoExcel, 3)

global Speople[3][2] = [["John",34],["Steve",23],["Bob",41]]
_Excel_RangeWrite(Sworkbook,1,Speople)

_Excel_BookSaveAs(Sworkbook, @ScriptDir&'"\names.xIsx",default, True)
_Excel_BookClose(Sworkbook)

MsgBox(SMB_OK,"","Workbook closed click okay to reopen")
Snewworkbook=_Excel_BookOpen(SoExcel, @ScriptDir&"\names.xIsx")
sleep(2000)

Sdata=_Excel_RangeRead(Snewworkbook)

_ArrayDisplay($data)

This example uses an image from the Autolt website that you will need to store in the same directory.
You can find it here: http://www.autoitscript.com/images/logo autoit 210x72@2x.png

3k 3k 3k 3k 3k 5k 3k %k 3k 3k 3k %k 3k %k 5k 3k sk %k 3k ok 3k sk 3k ok 3k >k ok sk sk ok %k kook sk sk k ok

Examplel5.au3

sk 3K sk 3k sk 3k sk sk sk sk sk sk sk sk sk sk sk sk sk 3k sk sk ok sk ok sk ok sk ok sk sk skosk sk sk sk k
#include<Excel.au3>

SoExcelApp=_Excel_Open()

SoExcel = _Excel_BookNew(SoExcelApp)

Spath = @ScriptDir&'"\au3logo.png"
StargetRange=SoExcel.ActiveSheet.Range("A1:D10")

func _InsertPicturelnRange(Spath, StargetRange)
; inserts a picture and resizes it to fit the TargetCells range
Dim $p, St, Sl, Sw, Sh
; import picture
Sp = SoExcel.ActiveSheet.Pictures.Insert(Spath)
; determine positions
With StargetRange
St=.Top
Sl = .Left
Sw = .Offset(0, .Columns.Count).Left - .Left
Sh = .Offset(.Rows.Count, 0).Top - .Top
EndWith
; position picture
With Sp
Top =St
Left=$l
\Width = Sw
.Height = Sh
EndWith
Sp = "Nothing"
EndFunc
_InsertPicturelnRange(Spath, StargetRange)

178 |Page
Jayme Fishman, Copyright 2015 all rights reserved

http://www.autoitscript.com/images/logo_autoit_210x72@2x.png

iw

Jon” runs the Autolt forum referenced in the text and does not include his last name in his posts.

179 |Page
Jayme Fishman, Copyright 2015 all rights reserved

