
1 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

2 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Foreword

When I released the first version of AutoIt in 1999 I did not think that it

would attract a global following. Today the AutoIt forum has over

60,000 members who have generated over a million posts for coders of

all levels. JFish, one of our forum members, recently created this book

“Learn To Program with FREE Tools Using AutoIt”. It provides an

excellent introduction to programming and AutoIt. I would recommend

it to anyone who wants to understand the basics along with plenty of

examples.

- Jon, AutoIt creator i

3 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Contents
Prologue .. 7

Section I: About me and the intended audience .. 7

Section 2: The approach ... 7

Section 3: Why this programming language? .. 7

Chapter 1: Types of Data... 8

Chapter 2: Variables .. 10

Chapter 3: “Hello. Operator. How may I assist you?” .. 11

Chapter 4: Let’s Program Something Shall We? ... 14

Chapter 4: Section 1: Installing AutoIt .. 14

Chapter 4 Section 2: Our first program: ... 24

Chapter 4 Section 3: Using our first program to incorporate concepts from prior chapters 31

Chapter 5: Conditional Statements ... 33

Chapter 6: Do That Again. Understanding Loops ... 39

Chapter 7: Custom Functions ... 49

Chapter 7 Section 2: Variable Scope ... 52

Chapter 8: Arrays .. 54

Chapter 9: Graphical User Interfaces (GUIs) ... 57

GUI / Control Layout ... 58

GUI Creation .. 58

The Button .. 62

The Input Box .. 65

Positioning GUI Controls ... 66

Listening for control messages ... 69

GUICtrlRead .. 69

Simple GUI Calculator ... 70

GUICtrlCreateCombo .. 72

Chapter 10: Introducing KODA – Drag and Drop Graphical User Interface Tool .. 78

Step 1: ... 79

Step 2: ... 79

Step 3: ... 80

Chapter 11: What’s in a name? String management. .. 93

4 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

StringInStr ... 93

StringLen ... 94

StringReplace .. 95

StringSplit .. 96

StringTrimLeft ... 98

StringTrimRight ... 100

StringLeft and StringRight ... 101

Chapter 12: Files and Directories .. 102

Files ... 102

File creation – FileOpen / FileWrite / FileClose .. 102

FileWrite .. 104

FileRead ... 106

FileCopy ... 107

FileOpenDialog .. 108

Directories ... 109

DirCreate ... 110

DirGetSize.. 110

Drives .. 112

DriveGetDrive.. 112

Chapter 13: Macros... 113

AutoIt-related macros ... 113

@error ... 113

Directory macros ... 113

System Info macros ... 115

Time and Date macros .. 116

Chapter 14: User defined functions .. 117

Array.au3 ... 117

_ArrayDisplay .. 118

_ArraySearch ... 118

_ArraySort ... 119

File Management .. 120

_FileListToArray... 120

5 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

_FilePrint ... 121

GUI UDFs ... 121

SQLite .. 122

In-memory database ... 123

Physical database .. 124

Chapter 15: Automating other applications ... 125

Windows Management ... 126

WinAcvitate ... 127

Sleep .. 128

WinClose ... 128

WinWaitActivate ... 128

Send .. 129

Run .. 130

Updating controls ... 131

Au3Info .. 132

ControlSetText .. 136

ControlCommand .. 137

ControlSend .. 138

Mouse Management ... 139

MouseGetPos .. 140

MouseMove .. 140

External application UDFs ... 140

Excel UDF .. 140

_Excel_Open ... 141

_Excel_BookNew ... 142

Excel_RangeWrite ... 145

_Excel_BookSaveAs ... 147

_Excel_BookOpen ... 148

_Excel_RangeRead .. 149

Your functions ... 150

Chapter 16 Compiling: Making your programs into executables ... 152

First method: ... 152

6 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Second Method: .. 153

Third Method: ... 153

Chapter 17 AutoIt Forum Rules .. 154

Chapter 18 Links To Source Code Examples Used In This Text ... 154

Source now included in the Appendix to this text. It may also be downloaded as a companion file on

the AutoIt forum download page. .. 154

Chapter 19 Conclusion .. 154

Appendix ... 155

7 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Prologue

Section I: About me and the intended audience
I was always very competent when it came to using computers but I never wrote (or understood) a

single line of code. I was very interested in learning - but how?

I followed the usual path of going to the bookstore and sifting through all the “Teach yourself

programming” books. It was dizzying. There were so many, covering so many different languages, that I

did not know where to start. I eventually settled on “Programming for Dummies” – an uninspired

rudimentary manual that raised more questions for me than it answered. Months and years of

occasionally picking up books and putting them down resulted in even more frustration. Then I enrolled

in a beginner’s class for Java programming at the Harvard Extension School. It turns out that all I

needed was the basics fed to me in a digestible way to start me on the path of being able to write my

first program.

If you are like I was – someone who has the desire and has poked around a lot with various sources of

information but never really made the connection to the material that allows you to succeed – then this

book is for you.

Section 2: The approach
This book takes the approach of teaching you about all programming languages by introducing you to

AutoIt – a free automation and scripting language for Windows. The tools and programs that we will

use can only run on the Windows platform. If you have a Mac all is not lost - you can run Windows on a

virtual environment through a program like Parallels and install these tools on your virtualized Windows

environment.

Some books take the approach of starting with a single application and adding to it. I find that this can

be very confusing. If you don’t understand any piece of the application your confusion may interfere

with subsequent lessons. We will start off by studying core concepts and will demonstrate them in

actual programs that you can build and run.

NOTE: Be patient. I know the urge is to just skip all of the foundational pages and get to a program

to see it work but you won’t do yourself any favors if you don’t understand how it works. Believe me; I

have done the same thing.

Section 3: Why this programming language?
We are using AutoIt because it a very powerful free tool. The other reasons are that AutoIt has an

incredibly well documented help file and user forum. You can use the help file to figure out how to do

just about anything (this book tracks very closely to the help file). If you ever get stuck, you can visit the

AutoIt online forum and ask a question. As long as you follow the forum rules and are courteous you

will almost always get a super-fast response that guides you in the right direction. AutoIt is also very

powerful. You can create full featured applications very quickly. As a testament to that there is a

8 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

section in the forum that contains example applications and it is filled with many stunning entries that

you can download, use, and even change (assuming the author provides permission to do so) to suit

your own needs. And did I mention it was FREE? Don’t worry if you have never heard of it before and

want to program a specific language like C#, Java, PHP, etc. This book will provide you with the ability to

switch languages very quickly. That is because all languages have a similar foundation of core concepts.

Chapter 1: Types of Data

Programs are basically sets of instructions for computers. To make a program that does what we want

it to do we need to understand some of the basic types of data that are used. Every programming

language has this concept.

 NOTE: You will often see it referred to as “data types” or “datatypes.” The transformation of the

layman’s description “types of data” to the more technical term of art “datatypes” is fairly benign

because they are almost identical. That won’t always be the case as we explore other technical

vocabulary words that we will need to understand throughout the materials but I will always try to make

sure the root meaning is well understood so that you don’t have to keep flipping back pages to figure

out a definition introduced in a prior section.

To better understand different types of data consider for a moment that source code, the code that we

write as programmers when building our applications, has to be human readable (else how could we

work on it?). As such, we are primarily dealing with letters and numbers – the components of our

everyday language. We also expect to see output from a program in human readable form. For

example, if I want to write a calculator application I will need to create a program that understands how

to display numbers and perform mathematical operations on them and then display the results.

Just like in the real world, within programming there are many different types of numbers. There are

whole numbers, those that have a decimal point, negative numbers, positive numbers etc. Likewise,

when we think of letters we know that we could have a single letter, a grouping of letters that forms a

word or a sentence, etc. Programming languages account for these nuances by referring to the

different options as types. For example, a whole number without any decimal places after it is referred

to as an integer. That vocabulary word is not terribly important at the moment other than to note that

there are other names for other types of numbers.

So what’s in a name? What difference does it make what I call a number that I want to use? Consider

the calculator example for just a moment. I am writing a program for a calculator and I decide to use

only integers (or whole numbers). Would that work? What would happen if I divided the number 1 by

the number 2? The answer is .5 and that is not a whole number. Therefore, strictly using the datatype

integer that only allows for whole numbers in my calculator could lead to problems. It could produce

the wrong result or crash the entire application.

9 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

NOTE: When something unforeseen and unintended occurs in your program we call that a bug.

Bugs are inevitable – especially when you are just starting out. Being careful and planning can help you

reduce the number of bugs and get a solid program up and running in no time.

Some programming languages are syntactically stricter than others. That means that within the

program you are writing you have to be extremely careful with your punctuation and the way you refer

to all of your data or it may not run correctly. Many languages will make you “declare” your datatype

before you start using it. In other words, if you wanted to use an integer you may have to signal to the

program that is your intention. One of the nice things about AutoIt is that it is a “looser” language. It

does not require strict declarations that can trip up new programmers. Just be aware that if you

transition to another programming language you may need to account for those types of differences.

In AutoIt there is only one datatype called a Variant. A variant can contain numeric or text data and

decides how to use the data depending on the situation in which it is being used.1 In other words, as we

write AutoIt applications what we are doing will automatically determine the internal datatype. Since

there is only one official datatype “variant” AutoIt does all the work for you and uses internal datatypes,

i.e. those commonly used in the other languages behind the scenes (such as “ integer”). That means

that we are not required to declare them explicitly in our programs. AutoIt will take care of that for us.

Another internal numerical datatype that is very common is called a “double.” AutoIt’s help file defines

a double as “A precision floating point number.” Said another way, this is a number that can use

decimal places. Using doubles may be a better choice for the arithmetic operations of our hypothetical

calculator application.

We also need to understand letters. Most programming languages refer to text as a “string” (an easy

way to remember this is a “string of letters”). You can create a string in AutoIt simply by enclosing your

text in quotation marks (single or double quotes). The following are all strings: “Hello World”, “Dog”,

and “Cat”. How about “100”? Is that a string or a number? The answer is string. If instead we were to

simply type 100 without the quotation marks it would be treated as a numerical value. Once you wrap a

number in quotes the program thinks of it as text.

 NOTE: It is beyond the scope of this section but you can “cast” one data type to another. So if you

have a number in a string “100” you could explicitly tell the program to treat it as a number by “casting”

it to that datatype. However, it will default to text unless you do so.

A “Boolean” is another internal datatype that is very useful. It is a logical value that can be either True

or False. It cannot be anything else. You can use Booleans in your applications to test certain logical

conditions. We will talk more about that later.

1
 From the AutoIt help file “Language Reference – Datatypes”

10 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

REMINDER: We need data to write programs. Different types of data are referred to as

datatypes. AutoIt, our programming language of choice, has only one datatype called “variant.” The

language automatically knows which datatype to apply internally based on the context of its usage.

Integers and doubles are internal numerical datatypes used for whole numbers and precision numbers

respectively. A string is an internal datatype used to refer to text. A Boolean is an internal datatype

that can only be true or false.

Chapter 2: Variables

Your program will almost certainly need to temporarily store some information for one reason or

another. The place this information is stored is called a variable.

Variables have whatever names you give them. That is why it is important to give them a name that is

meaningful. Think of it this way, you will be writing programs that could have hundreds or even

thousands of lines of code. They may contain many variables. If you give them names like “variable1”,

“variable2” and so forth you will start to forget what you are using them for as you get further into your

application. Compare that approach to more descriptive storage names like “first name” and “age”. It is

hard to forget what you are storing in those variables because their names describe the information.

You can store all sorts of information in a variable. You can store numbers like: 10, 2.14, -128.223. text

such as “the quick brown fox jumped over the log”, and much more.

This is all starting to sound very technical so let’s use the very first line of code that appears in this text

to visualize the concept of variables. To understand what we are about to look at you need one more

piece of information. In AutoIt each variable name (remember we can call them anything) must start

with a dollar sign “$”. Here is our first variable: $message.

We can point our variable to information by using an equal sign. The information that follows is

“assigned” to the variable.

$message = “your first variable”

The above code is creating a variable called “$message” and using it to store some text. We could have

used any name we wanted but since we are storing a message “$message” is descriptive. The equal sign

that follows the $message variable is used to assign the text “your first variable” (which is also referred

to as a “string”) to $message. Therefore, we have assigned the string “your first variable” to the variable

“$message.”

There are a few more things about variables that we will explore in subsequent chapters. The above

explanation should be enough to get us started.

11 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 REMINDER: variables are places to store information. We can use any name we want for a

variable but should strive to make those names descriptive. In AutoIt the name of our variables are

always preceded by a dollar sign “$”. Although variables can be used to store various datatypes such as,

numbers, text, or Booleans (true / false) AutoIt only has one datatype: variant, and it figures out which

internal datatype to apply for us automatically.

Chapter 3: “Hello. Operator. How may I

assist you?”

We already know all about datatypes that describe numbers and letters along with variables where we

store information. Now we may want to take our data and compare it or perform arithmetic on it (i.e.

do something with it). These types of actions are facilitated by operators. You already know many of

the operators even if you don’t realize it. You learned them in grade school. The operators for addition,

subtraction, division, and multiplication are as follows: +,-,/,*.

Let’s combines some concepts here to see operators in action. In this example we will create two

variables $firstNumber and $secondNumber to which we will assign values 3 and 5 respectively:

$firstNumber = 3, $secondNumber=5

Now those variables are storing our information and we can use them to make a little program. To

illustrate this I will create a third variable called $answer. We will use it in our program to store the

results by assigning the sum of the first two variables to it. We will use the operator “+” to add the first

two variables together.

$answer = $firstNumber + $secondNumber

If we printed out the contents of the $answer variable after we ran this simple program we would see

the numeric value of 8. This example allowed us to use datatypes, variables, and operators to produce

the sum of two variables. Adding 3 + 5 is not an example of a particularly powerful program. You may

never want to write that since you already know the answer but consider the use of bigger numbers.

AutoIt even supports scientific notation. What if simply changed the values of $firstNumber and

$secondNumber to the following values expressed using scientific notation 1.826395e7 and 23.34e3 and

multiplied them rather than add them together? If you can do that in your head kudos! For those who

can’t the answer is: 426280593000. I only know that because I ran the program to get the answer. The

point is that we can get our programs to easily perform tasks that we would find difficult or impossible –

and they can do it at incredible speeds.

12 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

We won’t cover every operator available in the AutoIt language. You can see the complete list at any

time in the AutoIt help file that you will receive when we install the software (or you can view the online

version on their website).2 For now, let’s cover a few of the more prominent ones:

> Tests if the first value is greater than the second.

>= Tests if the first value is greater than or equal to the second.

< Tests if the first value is less than the second.

<= Tests if the first value is less than or equal to the second.

= Tests if two values are equal.

<> Tests if two values are not equal.

& Joins two strings.

Many of these operators also probably look familiar to you from your experience outside the

programming world. The syntax you may have used in the past may be slightly different but hopefully

the concepts look familiar.

I will demonstrate how they are used within a program. Let’s imagine that you are writing a program

that will decide whether or not somebody is eligible to vote. We know the voting age is 18. Our

program could ask the user to enter their age. We know that if a user’s age is less than 18 or, using an

operator <18, the program could determine they are not eligible. We also know that if the user’s age is

>18 they are eligible to vote. The other two scenarios may be slightly less obvious. Let’s start with

greater than or equal to >=18. That means that if the user is equal to 18 or older than 18 they are

eligible to vote. That operator would suit us just fine as it seems to cover all the scenarios to determine

if the user can vote (i.e. 18+). Using only > instead of >= would not allow us to correctly determine that

somebody who is exactly 18 is eligible because it would only identify someone older than 18. Likewise,

using <=18 to determine who is not eligible would lead to the false conclusion that someone whose age

is equal to 18 is not eligible.

We may also want to compare values to test whether or not they are equal to each other. For this we

would use = and <> respectively. To demonstrate this let’s use a different example of a program that

randomly selects from three different greetings: $greeting 1, $greeting 2, and $greeting 3. How might

we tell the program what do to if it selects $greeting 2? One possibility is that we would use the =

operator to say that if the random selection = $greeting 2 say “hello from greeting 2”. You can also

imagine how we might use not equal, <>, for similar tests and instructions within our program. For

example, let’s say it was important to your program to determine if the randomly selected greeting is

anything other than $greeting 2. To do that you would instruct the program to test if random selection

<> $greeting 2. If that test is true then it must be something other than $greeting 2.

2
 http://www.autoitscript.com/site/

13 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Let’s cover one last operator used to join two strings together. We know from our discussion on

dataypes that a string is information appearing between quotation marks that the program treats as

text. We already assigned a string to a variable when we wrote: $message=“your first variable”. Now

what if we wanted to add to that message? What if we wanted the entire message to say “your first

variable. Wow! Look we are programming!”. One approach could be to re-assign that entire message

to the $message variable as follows: $message = “your first variable. Wow! Look we are

programming!”. However, thanks to our friend the ampersand operator, &, we don’t have to do that.

The code below demonstrates the use of the ampersand operator to concatenate (i.e. combine / join)

two strings together. The code also uses semicolons to add comments that are ignored by the computer

when it runs (see the note below the code explaining comments in more detail):

$message=“your first variable” ; this is a comment explaining that we already wrote this earlier

$additionalMessage = “ Wow! Look we are programming!” ; note the extra space before Wow.

$combinedMessage = $message & $additionalMessage ; will produce “your first variable. Wow! Look

we are programming!”

Let’s discuss what we just did above. We simply joined two strings, or text, together with the “&”

operator. The result is that the messages are combined into a single block of text. It is worth

mentioning that they are also still separate in the first two variables we used of $message and

$additionalMessage. They are only joined in the $combinedMessage variable. Therefore, the

comments below reflect what we would see if we where to print all three:

$message ; “your first variable”

$additionalMessage ; “ Wow! Look we are programming!”

$combinedMessage ; “your first variable. Wow! Look we are programming!”

NOTE: Every language has a way to add notes to that program that are ignored when the program

runs. We call these comments and they are useful to programmers to document what they have done

as well as teach others reviewing their code. In AutoIt we use the “;” to comment on a line of code.

Everything that follows the semicolon on that line will be ignored by the program when it runs. Think of

it as a way to add your own sticky notes within the application.

REMINDER: operators help us perform operations with our data. Many of them are intuitive

because we have seen them before outside of programming. Some examples of common operators

include greater than “>”, greater than or equal to ”>=”, less than “<” , and less than or equal to “<=”.

We can also test to see whether or not things are equal with the = and <> operators. The ampersand

operator “&” can join strings together. Finally, a complete list of AutoIt operators can be found in the

help file.

14 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Chapter 4: Let’s Program Something Shall

We?

NOTE: This chapter is broken into two sections: Installing AutoIt Development Tools and Our First

Program. If you already have AutoIt installed you can skip the first section of this chapter.

The first three chapters provided us with an introduction to datatypes, variables, and operators. Those

concepts help define the various types of data we will be working with, how to store them, and how to

perform operations on them respectively. There are many additional nuances on all three subjects that

we did not cover because some of it will be covered in subsequent chapters and some of it is beyond the

scope of this text. The information we already covered is enough to get started writing our first

program. However, we will need to download and install some tools used to write the programs and

test them. The following instructions demonstrate a step by step installation process to get you started:

Chapter 4: Section 1: Installing AutoIt
Before we can install AutoIt we have to download it from the official website at:

http://www.autoitscript.com. Once on their site you will see a section for downloads. If they re-design

their site it could move but as of the printing of this book you can find it here.

http://www.autoitscript.com/

15 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Once you click into the download section you will be presented with several options. I recommend

selecting the “AutoIt Full Installation” package because it will add all the necessary components to your

system with one easy installation.

16 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

When you download, click the file to open it and you may see a warning that you are opening an

executable (exe). Click “OK”:

After that you will be presented with a window asking you if you want to run the application. Click

“Run”.

17 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Next you will be in the installer that will walk you through the options to install the AutoIt application.

Click “Next”. NOTE: the version numbers change with each release. They have been replaced with

black boxes to avoid confusion between the version number in effect at the time this text was written

and the latest version that you may download and install.

Then you will be presented with the license agreement. Click “I Agree”:

18 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

AutoIt saves files that you create with a *.au3 file extension. Those files are the source code for your

programs. You can run them as a program and/or edit them. The next screen asks what you would like

the default behavior to be when you click on an *.au3 file. It will either run by default or open up in an

editor for you to edit. If you pick run you can still edit the file by opening it in the editor. If you pick edit

you can still run the file. This is only your personal preference for what happens when you click the file.

AutoIt is a “scripting” language so programs are often referred to as scripts.3 The installer is defaulted to

“Run the script” whereas my personal preference is to “Edit the script”. Pick the option that suits you

best and click “Next”.

REMINDER: AutoIt saves files that you create with a *.au3 file extension. Those files are the

source code for your programs. You can run them as a program and/or edit them.

3
 Scripting languages are known for the automation of tasks which could alternatively be executed one-by-one by a

human operator. http://en.wikipedia.org/wiki/Scripting_language.

19 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

You will then see a screen prompting you to select the components for install. Make sure all the boxes

are checked and then click “Next”.

20 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Next you need to select the location to install the AutoIt application. You can use the default location

that appears in the window or change it using browse. I recommend using the default. Click “Install”

when done.

21 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

The application will then start to install:

When it is done installing you will see a confirmation screen with a “Finish” button. Note that the

default checkbox with the green arrow will show the release notes when done. Release notes can be

important because they reflect all the changes to the AutoIt language that could potentially interfere

with your applications if you write something and then upgrade AutoIt. However, for now, since this is

your first program you can uncheck that box and click “Finish”.

22 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

If you check your installed programs you should now see AutoIt listed. Open the directory where you

installed and you should see the following:

23 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Two very important files are: AutoIt3.chm (note: use the one with the ‘3’) and inside the SciTE directory

(folder) there is a file called SciTE.exe. These files appear as follows:

Help file

SciTE (we will use this to edit scripts)

24 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

REMINDER: The AutoIt help file is a very valuable resource. It is very detailed, contains tutorials,

examples, and is searchable. Reading the help file will assist you in gaining a better understanding of

the language and programming in general. SciTE is the tool we will use to create, edit, and run our

programs. It has a built in syntax highlighter for AutoIt that will help make our code more readable.

NOTE: It is also worth noting that AutoIt has a Wiki. The wiki is located here:

https://www.autoitscript.com/wiki and contains a lot of valuable information beyond that in the help

file. It is yet another resource at your disposal to search for answers to common questions.

Chapter 4 Section 2: Our first program:
If you had any difficulty with any part of the install process you can go to the AutoIt website and post a

question about installing to the forum (please search the forum for answers first before starting a new

thread) and/or read the help file and FAQs. If all went according to plan you have everything you need

to create your very first program (also known as a script).

SciTE is a programming editor, a tool that allows us to write programs, that comes pre-loaded with

AutoIt keywords and functionality. It has the ability to highlight certain key words and areas of your

code to make them easier to read, auto-complete commands, and more.

Find the SciTE.exe application that was installed in the SciTE directory where you installed AutoIt. It

should look like the above picture and double click it to open the editor.

You should see something like this when SciTE opens:

https://www.autoitscript.com/wiki

25 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Note that SciTE is very similar to a word processor. You can see many icons that you are probably

already familiar with for saving, printing, copying, pasting, etc. However, as a program editor (also

referred to as a “script editor” or an IDE “Integrated Development Environment”) it can also help you

create, edit, and run your scripts (remember we will sometimes refer to our programs as scripts and vice

versa).

The perennial favorite first program for all languages is “Hello World” where we write a simple program

that displays the “Hello World” message back to us. I don’t want to rob you of the experience of seeing

those magic (and somewhat anti-climactic) words on your computer screen so I won’t break from

tradition – that will be our first program. From prior chapters we know that we are going to need to

create a string because the information we want to display is a message surrounded by quotation marks.

This signals to our program that we are dealing with text. AutoIt can figure out that the internal

datatype is a string because of the syntax (use of quotation marks). However, we have not discussed

how we are going to make the computer display the string back to us. To do that, we will use a function.

Every programming language has built in functions that perform useful tasks. They are pre-built

collections of commands created for programmers in an effort to reduce the amount of coding you have

to do (you can also create your own). We will cover many of the functions in the help file in subsequent

chapters. For now, we only need to understand that there is a pre-built function that can create a

message box that pops up on the screen and prompts us to close it with an “OK” button. The image

below reflects the section of the AutoIt help file that speaks to the creation of a message box. We will

study the command in detail and then use it in our first program.

26 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

MsgBox function screenshot above from AutoIt help file

In order for the message box to display the appropriate title and message we have to feed certain

information to it. These slots where we put this information are often referred to as parameters and

the data we supply are called the arguments. The help file screenshot for the MsgBox function shows

the command required to create the message box which is in yellow (i.e. typing “MsgBox” followed by

parenthesis that will contain the parameters which are separated by commas). Directly below the

command we see an explanation of the parameters. They are flag, title, text, timeout, and hwnd

respectively. All of these parameters are responsible for different facets of the message box. For

example, “flag” allows us to manipulate the appearance and behaviors of the message box we are

creating. There is additional information on the message box function in the help file that you can

review to understand all the options and what you would need to supply as a value for that parameter

to create your desired behavior/appearance. The parameters title and text will set the title of the

message box and the text contained within it respectively.

A quick review of the parameters shows that some appear within quotation marks while others do not

(i.e. title and text are in quotes). That is because the function expects us to input strings (text within

quotation marks) for those parameters. Said another way, the arguments we supply should be strings

27 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

for those two parameters. Conversely, the parameter flag is not in quotes. That parameter is expecting

a numeric value. If we put in quotes the program will think it is text and get confused.

We can also observe the last two parameters of timeout and hwnd are preceded by open brackets. That

means they are optional (as you can see in the comments from the help file that explain them). We

could optionally supply a timeout parameter so that the message box closes automatically after so many

seconds or we could leave it out entirely and it will use the default behavior that requires a user to click

“OK” to close it. That is different from the first three parameters. Those don’t have brackets.

Therefore, they are mandatory. We must supply all three arguments (one for each parameter of flag,

title, and text) or the program will not run. Instead, it will produce an error telling us that we did not

supply the required parameters to the function. However, we may be able to supply blank arguments –

which still satisfy the requirement of supplying the mandatory items. Passing an empty string (i.e.

double quotation marks with nothing in them: “”) as an argument will count. An example of this would

be if we wanted to create a message box with a title at the top. Then we could use double quotation

marks (“”) for the title parameter. The hwnd optional parameter is a bit advanced for the purpose of

this discussion. Handles are basically ways to refer to resources that we want to interact with. We will

cover that more in subsequent chapters.

Now let’s use this function and supply some parameters to create our own message box. Follow these

steps, which we will review after we run the program:

NOTE: This book comes with a companion set of files containing the code examples. Code

examples that appear in the file are organized by chapter. They are also called to your attention in this

text with the following tag:

In this case, the example below will be found in the Chapter 4 directory and labeled as Example 1

 Chapter 4 Example 1

First, type the following into SciTE:

Next, save the file with the name “hello world.au3.” You can save it anywhere but I recommend

creating a folder that will hold all of your programs.

28 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Now go back to SciTE and select “Tools” from the top menu, then “Go” (this is how we run the script):

You should see the following:

29 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Click “OK” and the box will disappear. Congrats! You just wrote your first program and ran it. This was

a simple one-line program but there is a lot of useful information if we dissect it a bit. The following

diagram breaks the program into five numbered pieces so we can easily refer to them:

#1) Here we are using a keyword that we have not previously covered called “#include”. This simply

references another named script to bring in or “include” within your script. It is handy for including

functions created by others, making your code easier to read by breaking it into sections with separate

scripts, etc. See #3 below for an explanation of what we are including.

#2) We know from the help file that the term “MsgBox” is a pre-built function that created the message

box we observed when we ran the program. For now, we need to understand that in order for the

message box to display the appropriate title and message we have to feed certain information to it.

These slots where we put this information are often referred to as parameters and the data we supply

are called the arguments. Our arguments appear within the parenthesis and are separated by commas.

#3) The flag parameter: The message box is customizable with different options. The first parameter of

“flag” is a mandatory parameter. We must supply an argument for it in order for the message box to

appear. The help file tells us that we could use this parameter to change the appearance and behavior

of the box when we supply an argument. There are many different flags available and referenced in the

help file. A partial screen shot of the help file is shown here:

30 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

The MsBoxConstants.au3 file contains a set of variables that do not change. They are referred to as

“constants”. The constants in the file give human readable names to the numeric flags used to

customize the message box with various options. For example, a flag with the value of zero (i.e. 0) will

create message box with an “OK” button. The file we included contains a constant of “$MB_OK” and

assigns 0 to it as follow $MB_OK= 0. Now, instead of using a number that does not make much sense to

us when we read our code (i.e. how are you supposed to know 0=”OK”?) we can use $MB_OK which

clearly conveys that we are creating a message box (MB) that has an okay button (OK).

NOTE: The use of #include <MsgBoxConstants.au3> is optional. It merely gives you access to the
human readable constants. If instead, you simply wanted to use 0 to show a message box with an OK
button you could do the following:

That will produce the same result as:

#4) The title parameter: The second parameter for the message box controls the title to the window

that pops up. You will note that when you ran the program the window had a title of “My first program”

that appeared in the blue title bar at the top of the popup window. If you were to leave this blank the

popup would not have a title. Alternatively, you could change this to anything within the quotation

marks and create a new and/or different title.

mk:@MSITStore:C:/Program%20Files%20(x86)/AutoIt3/AutoIt.chm::/html/keywords/include.htm

31 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

#5) The text parameter: The third parameter that we supplied dictates the message that will appear

within the body of the message box window. We supplied “Hello World” and that is what we saw when

we ran the program.

#6) The human-readable comment that does not impact the program: This was not required. I added it

so that we could study how to make notes in our program using comments that have no impact on the

actual script / program we are running.

It is also worth mentioning that we did not supply any arguments for the optional parameters of timeout

and hwnd. This is different than when we passed a blank argument to the optional parameter of flag. In

this case we did not supply any arguments – blank or otherwise. The program is fine with this because

they were optional.

REMINDER: Autoit comes with pre-built functions that can help reduce the amount of coding

required to get your program up and running. Many of these functions have parameters that impact the

outcome of the function when it is used. We can pass in data, known as arguments, to produce the

desired result when using functions. MsgBox is one such function. It has three mandatory parameters

that must be used to make the function operate correctly as well as two optional parameters that do

not have to be used. When the MsgBox function is run within an application the default behavior is that

it will pop up a small window (i.e. message box) displaying a message that requires the user to click “OK”

to close.

NOTE: Functions can also be created without any parameters. The arguments in this case are

“void”. An example would be somefunction(). In this case there are parenthesis that don’t contain

anything. The function would be called simply by referencing it: somefunction(). No additional

information is required.

NOTE: Though this was not discussed the message box will actually stop the rest of your script from

executing until it is either closed manually or with the timeout parameter. Therefore, be careful when

using it so you don’t stop an application from running through completion when a user is not there to

close the box. One way to avoid that is by having it close itself with the timeout parameter.

Chapter 4 Section 3: Using our first program to incorporate concepts from

prior chapters
Your confidence is no doubt swelling after you wrote you first program and ran it to completion. Now

let’s build on the first effort to incorporate variables and operators from chapters 2 and 3 respectively.

We already know what happens when we run the following line of code:

32 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Now what if we were to create two variables: $firstMessage and $secondMessage and store the

following information as follows?

How might we now combine those two strings to form our complete message and display it in a

message box? If you guessed with an operator, specifically the ampersand that is used to join strings,

you are correct! Here is what the modified program might look like with variables and operators:

 Chapter 4 Example 2

Try entering that text and saving it as a separate file called “helloworld2.au3”. If you run that program

you will get the identical message to the first program: “Hello World”. Note: the title of the window

changed because we changed the second argument to “My second program”. So why is it important to

know this other approach that takes more coding to produce the same result? Remember that we can

store anything in our variables. One possibility is that our program may have logic that changes the

information of one of our messages so that when the message box appears it says something

completely different (this would require additional code). The storage location is called a “variable”

which suggests that it can change. We will cover examples of how this occurs later on when we tackle

conditions that impact the flow of our programs.

33 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

REMINDER: We can use variables instead of typing out the data that we intend to use later on in

our programs. We can have variables that store strings (text) and join them with the ampersand

operator.

Chapter 5: Conditional Statements

Conditional statements can be used to change the flow of your program. You can test to see if a

condition exists and then depending on the answer follow a certain path. Let’s think back to our voting

example. We have already decided that if a person is greater than or equal to >= 18 then they can vote.

We covered the operator >= but did not discuss how to apply the test with code. The answer is in the

sentence we used to describe the test. “If a person is >=18 then they can vote”. “If … Then … Else” is

one of the conditional statements available in AutoIt. So how does it work? Let’s take a look at the

following example:

 Chapter 5 Example 1

If you want to type out this code and save it as vote.au3 you can. Then you can run it. When you do you

will see that if $age=17 you will get the second message box stating they cannot vote. When you run

the program above you should see the following output:

As you can see, the program selected the appropriate response based on the person’s age. However, if

you set the age to 18 or higher you will get the first message box stating they can vote. Try it out. Now

let’s cover why the program behaved that way. The “If… Then … Else” statement allowed to create a

conditional statement that tested for whether or not our age variable was greater than or equal to 18.

34 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

The statement allowed for two different paths that would trigger two different messages depending on

the answer

.

1.) On this line we have created a variable called $age that we are using to store the user’s age

which we have set to 17.

2.) On this line we have created the start of our If … Then … Else conditional statement to evaluate

whether or not $age is >= 18.

3.) This line is a catchall test. It is saying “for everything else, do this”. In our case, everything else

means that age is <18 since if it were >=18 it would have triggered the first test.

4.) We have to close our If … Then … Else statements by telling the program it is the end of our test

with EndIf.

Using the above program we can ensure the person is eligible to vote based on their age. What if

we also wanted to test to make sure that they were a U.S. citizen? In other words, our requirement

is that they are at least 18 years of age AND a U.S. citizen. We could express that in code using our

old friend the operator. We did not cover the “AND” operator earlier but it is a logical test that we

can use to ensure multiple conditions are satisfied. In this case we can test to see if $age>=18 AND

$nationality=”US”. The code would be altered as follows:

35 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 5 Example 2

If you run this example you will see that the person is not eligible to vote based on their nationality

even though they are 18 years of age. Now try changing the nationality from “Canadian” to “US”

and you will the output showing that they can vote.

Another way to test for multiple conditions using is a conditional statement is by “nesting” them.

That means you can place one conditional statement inside another. Let’s consider our voting

example. What if we changed the logic to look like this?

 Chapter 5 Example 3

This produces a similar outcome but it gets to the answer in a different way. Note that there are

actually two independent tests. The first is testing for nationality. If the person is not a U.S. citizen

it will skip over the age test and output the last message: “Sorry. You are not a US citizen”.

However, if you change the citizenship to “US” then and only then will it check the age requirement.

36 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

When it checks for the person’s age it will use the second If … Then … Else statement that is

“nested” within the US citizenship test.

NOTE: in the nested example there are two complete sets of statements starting with If .. Then

and the closing with EndIf. If you nest statements you will need to close the nested statement(s)

and the outer statements in which they are nested. Also, you can continue nesting multiple times so

that you have several more nested conditions. Alternatively, you may want to use the Select … Case

or Switch … Case conditional statements. They are detailed within the AutoIt help file.

NOTE: Certain words are considered “keywords” because they are reserved by the AutoIt

programming language. They are used to perform various tasks. “If, Then, Else, EndIF” are all

examples. There is a complete keyword reference in the help file.

With that understanding of the If… Then… Else in hand it’s time to “Switch” things up a bit. That’s a

bit of programming humor for you because Switch is a keyword also used for conditional

statements.

The AutoIt help file shows the syntax and parameters for the switch:

37 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

The switch will test an expression to see if it matches any of the cases. If it does, it will run the code

contained in the statement. Here is a small example:

38 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 5 Example 4

In this example we are testing the expression contained in our variable with the same name. The

script will set a message to different values for different cases. The cases we have setup can be

either 1, 2, 3 or ‘else’. That means we will see a different message if the value of $expression is 1, 2,

3, or something else. In this case, we have set the variable $expression to the number 5 so we

would see the following:

REMINDER: Conditional statements can be used to change the flow of your program. You can

test for certain conditions and have your program respond different ways depending on the

outcome. The If … Then … Else is a staple of conditional statements. It’s user friendly syntax allows

you to test to see “If” a condition is true and “Then” take the appropriate action “Else” do

something different. We can combine our use of operators with conditional statements to assist

with creating the condition we are testing. We can also If … Then … Else statements within each

other.

39 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Chapter 6: Do That Again. Understanding

Loops

As you start to write more programs you will invariably need to do something repeatedly. Consider

the conditional statements from the previous chapter. In that example we test to see if someone

was a U.S. citizen and at least 18 years of age to determine if they were eligible to vote. However,

we did it only for a single pair of values for $age and $nationality that we coded into our program.

What if instead, we had a list of 1,000 values and we wanted to test them all? Writing out a

program 1,000 times wouldn’t be any faster than looking at the list row by row (in fact it would

likely be much slower). For this type of task we have loops. Loops are statements that repeat for a

certain number of times or until a specific condition is satisfied.

To properly demonstrate a loop I am going to introduce you to another pre-built AutoIt function:

“ConsoleWrite”. ConsoleWrite will show information in the bottom of our SciTE window (the

console) when our application runs. It has only one parameter called “data” which is whatever you

want to send to the console. Therefore, the function looks like this: ConsoleWrite(“data”). Let’ start

of by sending a simple piece of text to the console and then we can introduce some loops.

 Chapter 6 Example 1

If you save this code snippet as “consolewrite.au3” you will see the following appear at the bottom

of the SciTE window:

40 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Note: The output has a bunch of information about how long it took to run your program, syntax

checks that were performed, etc. However, you can also see the output from our program next to

the arrow. It is somewhat hard to read because it is not on its own line. To rectify this we could add

a carriage return and make it easier to read by using a macro. Macros are predefined read-only

variables (so you can’t change their values) that offer easy access to various system resources.

Think of them as shortcuts. The macro shortcut for a hard carriage return is @CRLF. The first two

letters are for “carriage return” and the last two letters are for “line feed”. Together, they create a

“hard return” at the end of your text. Let’s modify our program to include the @CRLF macro and

see what happens to our output. Type the following into SciTE and save it somewhere:

 Chapter 6 Example 2

NOTE: we are adding the ampersand operator to join our text with the hard return. The script

would not run properly without the ampersand because “Hello World” is its own string (text within

quotations) and the @CRLF macro would be treated separately if we did not join them together.

The function expects only one argument for the single parameter. As such, the program would not

understand additional text without us signaling that the two should be combined into a single string

with the ampersand operator.

If you run the modified script your output should appear as follows:

41 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

You can see that the carriage return made our text appear on its own line with no text after it.

Now we will take the program one step further and use a loop to repeat the process. Let’s start

with the “for” loop. The AutoIt help file explains the syntax (i.e. format) for how to formulate a

“for” loop:

42 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

The loop will repeat everything after the “For To Step” line until it reaches the end count. After the

loop runs the designated number of times the script will continue to whatever follows “Next”. The

keyword “Next” is used to close the loop (just like EndIf in our conditional statements).

We covered the concept of keywords in the last chapter on conditional statements. “For, To, Step,

and Next” are all keywords. To create a For loop we use the keyword “For” to signal that we are

starting a loop. Then we assign a value to the start parameter to start our count for how many

times we want to perform the desired actions within the loop. Then specify a stopping point with

the stop parameter that follows the keyword “To”. We can optionally use a stepval parameter to

state whether or not we are counting by some number other than 1 which is the default (i.e. 2 to

count by twos, or -1 to count backwards). The value of our variable will increase (or decrease) by

the interval each time the loop runs. If we don’t specify anything our variable will increase by 1 each

time (that is the default as shown in the help file).

Let’s modify our code and test it out:

 Chapter 6 Example 3

Note, in the above example we started with a variable called $a and assigned it a value of zero. We

then told it to repeat the loop until $a was equal to 9. The $a variable automatically increases by 1

by default. That means each time the operation within the loop is performed the value of $a

43 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

increases until it reaches the stop number (in this case 9). How many times did we print out “Hello

World”? The answer is 10 … not 9. This is because we started at 0 and counted by ones until we got

to 9. That made the loop execute 10 times.

NOTE: Many programmers make the mistake of incorrectly counting the number of times their

scripts will run a loop because they forget that they used a zero base number from which to start

the count. You can avoid that by being careful or by assigning the value 1 to the variable in the

counter. For reasons we will cover later when we discuss arrays it is better to become familiar with

the zero number as the starting point.

We can see the value assigned to $a increasing if we change our code a bit. This time, instead of

printing out the same message over and over again we can write a value that is different each time.

To do this we will write to the console a short text message (string) joined with an ampersand

operator to our variable $a joined with another ampersand operator to a carriage return macro.

The output of the modified program appears in the console below the code. Now we have joined

the variable used in our loop to the data displayed in the console. By doing this we can see it

increasing each time the loop is run. We then joined the carriage return to the end of the data to

make sure each console message appeared on its own line.

 Chapter 6 Example 4

44 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

What would we do if we wanted to countdown from 9? To do that we could modify the code as

follows:

NOTE: In this modified example we are starting the value of $a higher than the stop value and

using the optional interval parameter to instruct the script to subtract 1 from the value assigned to

$a each time it runs the loop. Note the difference in the output.

Another really important tidbit about For loops is that just like IF … Then … Else conditional

statements they can be nested. That means you can put one or more loops inside your outermost

loop. This is very powerful but we warned – it can also quickly create confusion as you need to

remember what each loop does and how many times it does it. For that reason, I like to comment

the “For” line of each loop to remind myself what each loop is doing. Also, we want to make sure

we use different variable names for each variable in each separate loop. If the first one was $a we

may want to make the second one $b. Alternatively, we may want to use a more meaningful name

as is the best practice when dealing with variables in general. Let’s explore a simple example of a

nested For loop:

45 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 6 Example 5

In this example several things are happening: We have introduced a new variable called $loops to

which we assigned a value of 1. We will use it to keep track of the number of times we execute the

outermost loop. Then we created an outer loop that will run twice (For $a=0 to 1). We then nested

the loop we were using earlier counting from 0 to 9 inside the outer loop (but we changed the

starting count variable from $a to $b so as to avoid confusion with the outer loop). Finally, we

added two lines of code:

ConsoleWrite("Inner loop:"&$loops& " set finsished"&@CRLF), and

$loops+=1

46 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

The first line of code is creating a new message that we will write to the console every time the

inner loop completes. We are using the $loops variable we created to tell us how many times the

inner loop has run. The next line of code uses a special operator “+=” which adds the number

following the “=” to the $loops variable. Therefore, since $loops started with a value of 1 when we

say $loops+=1 the value of loops becomes 2.

NOTE: Loops can introduce a lot of power into your scripts – but they can also introduce

complexity. If you start to get overwhelmed try breaking your script down into pieces and testing

each piece separately before combining them (that goes for any code – not just loops).

The next type of a loop is another powerful way to repeat instructions. However, it can be very

dangerous if used incorrectly. It is called the “while” loop. It tests for a certain condition and

repeats the loop “while” the condition is true. It is dangerous because if loop never has a condition

that sets it to false it will keep running in an “infinite loop”. That means that the script will get stuck

running the same lines of code over and over again forever (or until you forcefully close it). On the

other hand, sometimes this will be your intention. You may have need to create a loop that is open

as long as you program is running. A common example is when you show a user interface (i.e. an

application with controls like buttons, text boxes, menus, etc) which we will over later. You would

not want to flash the controls for a split second only to have them disappear before a user could

interact with them. In that case, “while” can be employed to keep the application open. More on

that later when we cover interfaces.

The help file explains the syntax for this loop as follows:

Let’s test out a loop with a simple example building on some of the concepts we have already used.

In this example we will create a variable called $a and assign it 0 ($a=0). Then we will create a while

loop that writes a message to the console as long as $a is less than 10. We must also remember to

increase the value of $a with every pass or we will be stuck in an infinite loop. The code and the

output for this example appear below:

47 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 6 Example 6

NOTE : The expression is tested before the loop is executed. That is why we see it stop at 9. On

the 11th pass $a would have been 10 would no longer be < 10. Therefore, the test would be false

and the loop would end. Also, it is important to note that you can also nest While loops.

You know what I am going to Do? I am going to “Do” loops “Until” we finish the topic. That’s right,

Do … Until is another type of loop statement. The AutoIt help file explains the syntax as follows:

48 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Did you know that almost every topic in the help file comes complete with its own code example?

Not only that, but you can usually open the code up with the push of a button and test it out. Let’s

take a look at the code example for Do … Until:

The script should open up in SciTE when you click the button:

From there, you can run it to see what happens. You will note that in this case we will see message

boxes appear that must be closed until the value of $i is equal to 10. What is the last value that you

see in the message box as you click through them? It should be 9. Why not 10? The answer is that

it stops once the condition on the “until” line has been satisfied. In this case line 3 creates a

49 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

message box displaying the current value of $i while line 4 adds 1 to the value of $i and then adds it

back to itself (another way to do this is $i+=1 as we saw in the previous section). Therefore, the

value of $i increases after each message box. As a result when the message box display 9 as the

value of $i the very next thing to happen is that $i is increased to 10 at which point the loop stops

because it only goes until $i = 10.

It is important to note that the condition the Do … Until loop is evaluating is tested after the loop is

run so the loop will be executed at least one time. This is different from the while loop which tests

before the condition is evaluated and, therefore, is run zero or more times.

REMINDER: Loops can be used to help us repeat actions for a certain number of times or until

a condition is satisfied. The For loop uses a variable to which we assign a starting value for the loop

count. Then we specify “To” what number we would like to count to (up or down). Finally, if we

desire to count by something other than +1 we can use the optional interval parameter to express

the value by which our starting variable will change (i.e. 2, 5, 10, -1, -3 etc). The Next keyword

signals that we are done supplying commands that we would like to run inside our For loop. While

loops test for a condition before executing the loop. As long as the condition is true the loop will

continue. Be careful not to create “infinite loops” (unless that is your intention) by ensuring you will

eventually get a false result and stop the loop. While loops test for the condition before the loop

runs so they will run zero or more times. “Do … Until” performs a loop until a condition is met. It

tests for the condition after it runs so it runs at least one time.

Chapter 7: Custom Functions

We have already seen some examples of functions that are built-in to AuotIt. In Chapter 4 we were

introduced to the MsgBox function that we used in our first program to display “Hello World” and in

Chapter 6 we used ConsoleWrite to output the results of our loops to the screen within our SciTE editor.

Those functions are ready for use without any additional coding from us. Think of them as pre-packaged

lines of code that can be called or used from within our script simply by referring to them by name and

supplying the necessary arguments if required (information required by the function – though recall

some don’t require any arguments). Most (if not all) programming languages also let you write your

own functions. AutoIt uses the keywords “Func” and “EndFunc” to create a user defined function as

follows:

50 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

In this example we are using the keyword Func to signal that we are creating a user defined function.

Then we are naming it “_myFunction()”.

NOTE : It is not required but rather recommended that as a “best practice” you start a user defined

function name with the underscore “_” to differentiate it from prebuilt functions. Also, note the way

the name starts off with a lower case “m” and the second word is capitalized. It is a common practice to

make the names of your variables and functions easier to read my starting with lower case and

separating each word with the use of capital letters. The parenthesis that follow the name of our

function is where we would place any parameters that we wanted to use within the function. This

function is void of parameters so it is just an empty parenthesis. That means no additional information

is required to run the function (i.e. no parameters as in the case of the pre-built MsgBox and

ConsoleWrite functions we used earlier.

The code above won’t actually do anything for two reasons. First, we have only created the user

defined function – we have not called upon it to do anything. Second, there is no code within the

function so even if we were to call it nothing would happen. Let’s change the example slightly by adding

some code and calling the function:

 Chapter 7 Example 1

In the above example we have added a line of code within the body of our function to create another

Hello World message box. Then we added a line of code after the function to run the function. Now

every time that we want to create the message box with that message all we have to do is call our user-

defined function “_myFunction()” instead of typing out msgbox($MB_OK,”User Function”,”Hello

World!”). That is not a huge savings of time but it can be when you consider that you can place as many

lines of code as you want within your function. Let’s try another example …

51 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 7 Example 2

The above example builds upon several things we have already learned. It may look somewhat complex

at first blush – but if we review what is happening you will see it is pretty straightforward. This user

defined function acts as a calculator that can add, subtract, multiply or divide any two numbers. The

function takes in three parameters: $firstNum, $secondNum, and $operator. These are for the first

number, second number, and mathematical operators respectively. Inside the function we have added

a conditional statement in the form of a switch that will change the flow of our script based on the

operator that we pass as the third parameter. In other words, if we say we want to add we would need

to pass “+” whereas if we want to multiply we would pass the “*”. The operator parameter is not really

the actual operator but rather a string (text) representation of it (because it is surrounded by quotes).

The switch then tests the value of operator argument to see which mathematical operation should be

used with the real operator (not in quotes). The $answer variable stores the results for us and the

message box displays those results. Finally, when we call the function we need to supply all three

parameters. In this case we have used (5,3,”+”) which means we want to add 5+3. Not surprisingly, the

script will produce the following output:

52 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

This function could come in handy for doing some simple math and displaying the results in a message

box. However, there is at least one problem with it. The function will do whatever we tell it to –

nothing more and nothing less. If we allow it do things that are inadvisable or even impossible it could

crash the script or generate other unforeseen bugs. What if we called the function as follows:

_mathWithAnswers(5,0,”/”)? What would that do? We would be trying to divide 5 by 0. That is a no-

no. In this case, the consequence would be trivial. We will see an error in the message box. However,

what if we were relying on the answer for another part of our script? You get the idea. To guard against

that possibility we can use a conditional operator and modify our program to block our undesirable

scenarios (that we can foresee ahead of time). In this case, we might try something like this:

 Chapter 7 Example 3

The modifications in the above code “trap” the error that we were concerned about and take it down

another path. Specifically, if the second number is zero then instead of doing the division it will explain

to the user that they can’t divide by zero … otherwise, it will proceed. You can see we used our old

friend If … Then … Else to accomplish this new error trapping functionality.

Chapter 7 Section 2: Variable Scope
When we first started talking about variables in Chapter 2 I intentionally skipped some information

about their usage. Specifically, variables also have an attribute called scope. This dictates where within

the script they can be used and recognized. The scope can be either local or global. I did not cover it

earlier because the function is the area that creates the greatest opportunity for differentiation – and

53 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

we just covered functions. This is because a global variable will be recognized by the entire script (inside

and outside of functions). By contrast, a local variable can only be seen within the function that uses it

unless: (a) we force it to be global in scope by using the global keyword or (b) a global variable of the

same name exists (in that case we can still force it be local using the keyword local). On the other hand,

a variable that is declared outside of the function is global in scope. The AutoIt help file summarizes

these situations as follows:

The help file section above that addresses variable scope also references the keyword Dim. The use of

this keyword is still supported to declare variables. However, best practice is to use either the local or

global scopes instead. Side note: Dim is a funny key word. So far many of the keywords we have

encountered have been somewhat descriptive of their usage. The origin of Dim morphed from the

longer term “dimension” which was originally used to declare the dimension of an array of values (i.e. an

“Array”) which we will cover in the next chapter. It was shortened to Dim and applied to all variables –

and arrays.

REMINDER: AutoIt has many pre-built functions that can quickly add power to your scripts. They

need to be called with the appropriate number of parameters as specified in the help file. However, you

can also create your own functions with the keywords Func and EndFunc. You can also name your

function whatever you want although best practices dictate that it start with an underscore (“_”) to

differentiate it from the pre-built functions. Once your function is written you can call it from within

your script as many times as you like which, just like the pre-built functions, can reduce the amount of

code you have to write. It is also a great way to organize your code for testing and debugging one

section at a time. For that reason, try to avoid enormously long functions and break them into smaller

pieces when possible. Variables can be local to a function or globally accessed from anywhere in the

script. Declaring a variable outside a function makes it global by default. Declaring it within a function

54 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

makes it private unless you use the keyword “global” or there is already a global variable of the same

name outside of the function. You can also force the variable to be local with the keyword local. Finally,

while you don’t have to declare variables you can optionally do so with using either local or global to

define their scope.

Chapter 8: Arrays

You will see reference to the term “array” in the AutoIt help file. So what is an array? Think of them as

variables that hold more than one piece of information. More precisely, an array is a data structure

that allows you to hold numerous data elements that you can access by referencing an index to their

position. For example, you may want to store three names in your array. To do so you could say:

dim $namesArray[3]=["John","Steve","Bob"]

In this case, we are holding three items so we might say the upper boundary is 3. That value must be

specified within brackets following the name of our array. Brackets must also be used to hold the items

we are storing in the array and those items must be separated by commas. The Array starts with a zero

index so although there are three values the indices are: 0, 1, and 2 for those three items. Therefore, if

you want to reference Steve you would say $namesArray[1]. Bob would be $namesArray[2]. If you try

to reference an index that is not part of the specified range you will get an error. This is what it might

look like in practice when we reference the second item of the above array:

 Chapter 8 Example 1

You can see that by referencing the index position of 1 we see “Steve” even though Steve is the second

entry. This is a consequence of the zero based index.

NOTE: Although the boundary of the array is specified when it was created i.e. the “3” in the

$namesArray[3] - the upper most index in the array is 2. This is because we have zero based index. It is

55 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

advised to keep all the elements of the array the same datatype. As you may recall from Chapter 1

AutoIt only has one official datatype called variant. However, from the variables usage it AutoIt will

assign an internal datatype of string, integer, double, etc. In our example all three values are of the

internal datatype string (meaning text within quotes).

Arrays can also be multi-dimensional. That means that you can have an array that looks like this:

dim $people[3][2] = [["John",34],["Steve",23],["Bob",41]]

Now we have three entries with 2 pieces of information per entry: name and age. To get Steve’s name

and age we would do something that resembles the following:

 Chapter 8 Example 2

Notice the way we declare our array and access the information within has changed slightly because we

now have a two dimensional array. The boundaries of each dimension are 3 and 2 respectively; three

items with two pieces of information per item. The brackets used to open and close the array []

encapsulate the entire array as well as each pairing. Then when we reference the data we must use

both dimensions. We already know that to reference a specific person our choices are 0, 1, or 2 because

there are three entries with a zero based index. That has not changed. However, since there are two

pieces of information concerning the person we are referencing we need to specify which one we are

after: name or age. Since there are only two values in our example (name and age) we will always only

ever reference 0 or 1. We will use 0 for name and 1 for age. Therefore, $people[1][0] is referring to the

name in the second pair while $people[1][1] is referring to the age in the second pair. How about if we

wanted to find Bob’s name and age in the array? What would that look like? It would be $people[2][0]

for Bob’s name and $people[2][1] for his age (John would be name: $people[0][0] and age:

$people[0][1]).

I realize that concept of creating a list of values and referencing them by an index number can seem

confusing. Why would we do that? Your script may use a lot of complex data. The ability to store it,

augment it, and access it quickly with a small amount of code is very powerful. Also, consider the loops

56 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

that we learned about earlier. Think about how the “For … Next” loop uses a number that increases

with each pass the loop executes. Combining a loop with an array is a natural fit. Take our example we

just covered and let’s loop it:

 Chapter 8 Example 3

In the above example you will note that we are creating a loop that starts at zero (for $a=0). When does

the loop end? When we covered loops earlier we specified a value to stop at 10, 17, 100, etc. or

dictated that the loop stop when a condition was satisfied. Now we are using a pre-built function called

UBound to tell us the stopping point which will be the upper boundary of the $people array less 1. The

upper boundary is 3. Why do we then subtract 1 from that value to create the number of loops we want

to perform? Because of the zero based array. The code will loop three times starting at 0: 0, 1, and 2. If

we used the upper boundary it would go four times: 0, 1, 2, and 3; that would be a problem for us as we

only have three pieces of data. If we let the script look for a fourth piece of data when there are only

three we will get an error.

Now that we know the script will loop exactly three times let’s take a look at what will happen inside the

loop. As you can see, it is the exact same thing that was happening before with one change: now we

don’t have to reference which person we want to read about in our message box. The loop will show

them all to us. It can do this because the value of $a is increasing by 1 with each pass. Therefore, we

can use it to reference it when we create our message box to point to the appropriate index in the array

like so:

MsgBox($MB_OK,"",$people[$a][0]&" is "&$people[$a][1]&" years of age")

The above line of code that uses the $a variable within the first dimension of the array to increase from

0 – 2 with each pass of the loop. Since there can only be two values in the second dimension: name and

age, we simply write 0 and 1 after the $a for the second dimension. When you run the code in this

example you will see three message boxes showing John, Steve, and Bob along with their ages in the

order they appear in the array. The loop has the same impact as writing out the following three lines of

code:

This is the equivalent of the image below with each pass of the loop:

57 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

REMINDER: Arrays can hold numerous data elements and allow you to reference them by their

index value. Most arrays have an index that starts with zero unless otherwise specified so the index will

not match the upper boundary of the array. Therefore, when looping through an array you should make

sure you loop to the upper boundary less one. This can be done with the UBound function followed by

the array of interest as an argument less 1: UBound($myArray)-1. Arrays can also be multi-dimensional.

You can reference any value but be sure to provide all dimensions when doing so or you may get an

error.

Chapter 9: Graphical User Interfaces (GUIs)

Up to this point we have learned about data, operators, conditions, and loops. Those are the basic

building blocks for almost any application. In fact, with those concepts in hand you could go off and

start to write your own scripts. However, sometimes you may want users to interact with your scripts.

One of the most popular ways to accomplish this is through the use of a Graphical User Interface or GUI.

GUIs contain various controls like buttons, areas to input text, dropdown menus etc. An example GUI

from the AutoIt help file is shown below.

58 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

From the AutoIt help file under “GUI Concepts”

GUI / Control Layout

Before we get too far into GUI creation we should understand the coordinate system used to place GUI

controls. In other words, how do we tell our program where precisely to place our button, input field,

etc.? The answer is by using an X,Y coordinate that is very similar to basic graph plotting that you may

have done in grade school. The following image illustrates this with a 300 x 300 GUI that does not yet

contain any controls. Knowing the size of our GUI we could quickly determine that the center point is

X=150, y=150 and so on. We can use any X,Y point within the 300x300 to place our controls.

NOTE: you can refer back to this image as we progress through some examples. We will do some

basic calculations to determine where to place the controls we create in our examples.

GUI Creation

GUIs can be created with a series of functions starting with the aptly named GUIcreate. Let’s take a

closer look at that function and its parameters.

59 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

The AutoIt help file section on GUIcreate.

We can see that there is only one required parameter: title. The remaining optional parameters are

used to dictate the GUIs size, placement, style, and behavior. If you supply a title the script will create

a GUI with some default dimensions but it won’t do much. It may not even stick around very long.

Why? Because the script is reading the instructions and executing them. When it runs the GUIcreate

function the script will end. So what would happen? We would see it flash up on the screen for a

moment and then disappear. How might we remedy this? Do you remember what I said in Chapter 6

about While loops? Here is a reminder:

60 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

“You may have need to create a loop that is open as long as you program is running. A common

example is when you show a user interface (i.e. an application with controls like buttons, text boxes,

menus, etc) which we will over later.”

If we combine the while loop with the creation of a GUI we can get it to stay around as long as we want.

Let’s take this in steps. First, let’s try to just call the function with the required parameter of title and

see what happens. To do that, type this into SciTE and run it: GUIcreate(“Test GUI”). Did you see

anything? Probably not. That is “When windows are created they are initially hidden so you must use

this function to display them (@SW_SHOW)” (from the help file). In order to that we need to add a line

of code so our script would now look like this:

GUIcreate(“Test GUI”)

GUISetState(@SW_SHOW)

If you run those two lines of code you will see the GUI flash up on the screen and disappear. We know

the cause of this. Now we need a solution that will stop it using a while loop. Don’t do the following,

let’s just take a look at it to understand what it does and does not do:

The above code will create a GUI and show it forever. Why? Because there is nothing in the while loop

to ever set the condition being tested (1) to anything other than 1. Isn’t that what we wanted? We did

want the GUI to stay around for more than a flash. However, forever is a bit longer than we probably

wanted. Therefore, we need a way to close the GUI. The following code snippet details an approach

we could take to accomplish this:

61 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 9 Example 1

#1) In this case, we are including AutoIt GUI libraries that help with styles and behaviors. The

Windowsconstants.au3 file is referenced in the notes to the GUIcreate function. You can refer to that

section of the help file for more information.

#2) This is what we started with. We use GUIcreate and GUISetState to create and show the GUI

respectively. The problem was that it flashed up on the screen and disappeared.

#3) This is where we setup our While loop. It still says “While 1” which would theoretically run forever.

However, now there is some additional code below that will save us from that fate.

#4) Here again we are using a switch which as we recall from Chapter 5 is a conditional statement. In

this case, the switch is triggered by the value of $nMsg – a variable that was included within the from

the #include files at the top. We can think of this in terms of the GUI “listening” for a message and

performing different behaviors based on the message contents.

#5) This is the only case within our switch. In other words, the only thing that the switch could do is to

listen for a message that is $GUI_EVENT_CLOSE. As the name would suggest, that event is triggered

when a user attempts to close the GUI.

#6) The case $GUI_EVENT_CLOSE close would not do anything if a user tried to close the GUI without

some additional code under it. Therefore, we have added a new keyword called “Exit” that will

terminate the script (i.e. end the program).

Putting all these pieces together we have created a GUI that we are showing a user which will stay open

until the user closes the GUI (with the red arrow in the upper right hand corner):

62 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

If you are underwhelmed at what we have built and think that it was a lot of work to do nothing – don’t

worry. It will get easier from here. That was just the basic framework to demonstrate how the GUI

works. Also, after we get a few more concepts down we will explore how to design a GUI without

writing any code using some free tools that come with AutoIt.

The Button
The following code will add a button called “Push ME” to our GUI:

 Chapter 9 Example 2

The parameters (found in the help file) are title, left, top, width, and height. The title is whatever we

want the button to display. The left and top parameters dictate where the button will be positioned

within our GUI. If you set the dimensions of a GUI using the optional parameters as you create it you

will have a much easier time placing controls. In the present case, I played around with the position

because we used the default dimensions (more on this later). When you run the code you should see

the following:

63 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Try pushing the button. Nothing happens when you do that. That is because we have not told the GUI

to listen for the button push. That is a new event that we need to introduce as a case. To that, we could

add the following to our script:

 Chapter 9 Example 3

64 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

#1) When you successfully create a GUI control AutoIt “returns” a control ID to you. This ID can be used

to interact with the control if you store it in a variable. In this case, $button is storing the control ID of

the newly created button control.

#2) In this step we are adding $button as a case to our switch within the while loop that is listening for

GUI messages. In other words, if our button control (the ID of which is stored in that variable) is pressed

then the program will run whatever code we have in the case for the button.

#3) This is the code that we want to run when the button is pushed.

NOTE: You don’t have to put all your code in the switch under the case. Remember, you can create

large functions elsewhere in your script and simply reference the name(s) of those functions in the

switch that is tied to the GUI control. This make it much easier to read your code.

When we tie it all together and push the button, this is what we will see:

NOTE : To interact with a control in the GUI we can create a case within the switch located in our

while loop (used to keep our program running). The case will listen for the controlID returned to us

when we successfully created the control. We store that ID in a variable and then “listen” for

interaction with it. When the case is triggered the script will run the code contained in the case.

65 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

The Input Box
It was great making a button and having it do something when we pushed it. However, we often need

to collect information from a user in order to make our program more useful. One way to do that is

with an input field. The function for this is described below in the AutoIt help file:

As you can see, the parameters to create an input are very similar to those used to create GUI. Let’s

incorporate an input field into our program. As we do this, we will also change the GUI a tiny bit by

adding our own width and height parameters rather than using the default size. This will make it easier

to place our controls. The following code creates variables that are used in the script to set the width

and height of the GUI. We can the reference the variables as the width and height parameters instead

of using numbers.

$guiWidth=300 ; the width of our GUI

$guiHeight=300 ; the height of our GUI

66 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Next, we will create similar width and height variables for our button and the input field:

$guiBtnWidth=75 ; the width of our button

$guiBtnHeight=50 ; the heighr of our button

$inputWidth=150 ;the width of our input field

$inputHeight=30; the height of our input field

Positioning GUI Controls

REMINDER: the layout chart we saw at the beginning of the chapter that explained X,Y

coordinates? Now may be a good time to refer back to it as we are about to do some basic

mathematical operations to calculate the placement of our button and input field’s position (i.e. their

“left” and “top” parameters).

In order to center the button and input in the middle of the GUI we need to use a small bit of math. We

need to take the width of the GUI and divide by 2. This is the middle of the GUI. However, the button

and input also have their own widths. Therefore, we need to subtract the width of the button and input

after they are divided by 2 to center them (this takes into account their width as part of centering

process). Then we need to do the same thing for their height.

; math to center the controls

$buttonTop=($guiHeight/2)-($guiBtnHeight/2)

$buttonLeft=($guiWidth/2)-($guiBtnWidth/2)

$inputLeft=($guiWidth/2)-($inputWidth/2)

$inputTop=(($guiHeight/2)-($guiBtnHeight/2))-($inputHeight+10)

Now let’s walk through some of the math in more detail as we take a closer look at how we placed the

input control. First, we positioned its left most coordinate. This was easy. We did the same thing as our

button code above except now we are using the input width:

($guiWidth/2)-($inputWidth/2)

Next we had to position it’s height relative to the top of the GUI. This was a bit more complicated

because if we used the same exact calculation as the button the input field would be placed directly on

top of the button. That would have obscured the button so instead we had to take what we did for the

button, factor in the height of the input field, and then add a 10 pixel buffer so that the input field

appeared above the button. Had we not done this the two controls would have been laid out on top of

one another and we could not interact with the properly:

67 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

(($guiHeight/2)-($guiBtnHeight/2))-($inputHeight+10)

Note the use of the parenthesis that dictate the order in which the operators are evaluated. The first

part the equation is the same our calculation to find the top parameter for the button. Then we

subtracted the height of the input control plus the aforementioned 10 additional pixels. This resulted in

placing the input control above the button by 10 pixels.

When we run our GUI it will look like this:

The code appears in full below:

68 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 9 Example 4

Why do this instead of just entering the positions we want as numeric values? One reason would be

that it allows us to place the button dead center in the GUI by using code. Another is that we may

change our minds a bit as we add controls. What if we want to make the GUI bigger and keep the

button in the center? What would we have to do? If we did not use variables we would have to

manually calculate the position relative to the GUI and then update the left and top numeric parameters

accordingly. Using the above approach it is automatic. When we make changes to the $guiWidth and

$guiHeight variables. The code does the work for us.

NOTE : using variables to position GUI controls can save you time if you decide to make changes to

your GUI. The controls can be setup to reposition themselves so that any change you make impacts all

other GUI elements without any additional coding.

69 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Listening for control messages

Now we are getting somewhere. We have a GUI, button, and input box. We can also make changes to

the layout with relative ease and everything will reposition itself. Of course, when we push the button

all that will happen is that we will see the message box that we wired to the $button earlier. Let’s use

that same message box to present whatever text we have typed into the input field. To do that, we will

need to read the input control and store the information in a variable. Fortunately, there is a function

for this called GUICtrlRead.

GUICtrlRead

It has one mandatory parameter of controlID. Remember that when we created the button we stored

the controlID in the button variable? We are doing the same thing for the input control when we placed

the variable $input= in front of its creation. Therefore, to read the what is in the input control all we

need to do is GUICtrlRead($input). However, we will want to store that message in a variable for later

use so let’s do this: $inputContents= GUICtrlRead($input). Then we only need to change the text

parameter in the message box to reference our $inputContents variable instead of our hard coded text.

This is what it would look like. Try it out yourself.

Alternatively, we could have done it all in one line of code as follows:

70 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Simple GUI Calculator

A great extension of this example would be to use the custom math function we created in Chapter 7.

Remember it? It allowed us to take any two numbers and perform a mathematical operation on them.

At the time, we were limited to manually entering the values for the math operations every time we

wanted to do a calculation (i.e. _mathWithAnswers(5,3,”+”). Now we can add a few controls to our GUI

and we will have a dynamic calculator. We already have one input control. That could be for the first

number. However, we will need to reposition it slightly by moving it up to allow enough room for

another input field. To do this we could change our top position calculation as follows:

Now we need to add a second input control for the second number. We already have all the math for

how the first two controls layout. No we can simply add a new line creating $input2. The only

parameter we need to change is “top”. To do this so that the new input appears 10 pixels above the old

one we could define $input2Top as:

The complete line of code would look like this:

Note we used identical parameters to $input with the exception of top. Now the GUI looks like this:

71 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

One problem is that we will always have to overwrite the existing text in our input boxes. To fix the

problem we could set the title parameter to “” (double quotes with no space). This is an empty string so

the input control will be blank at the start.

That is all well and good but how about our mathematical operator? What could we use for that? If we

use an input box we run the risk of a user typing in things that aren’t operators. We know that the

operator can only be one of four choices: +,-,/, and *. Therefore, it may be best to give those and only

those choices to a user. One way to accomplish that could be with the use of a combo box control. A

combo box is a dropdown menu that will contain whatever values we feed it as choices for the user.

The help file shows the function required to create a combo box:

72 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

GUICtrlCreateCombo

Our biggest problem will be where to place it. I would propose to the left of the two input boxes just

between them on the height so it looks like a math equation. To do this we would create the following

variables:

The first two variables set the width and height of the combo control. The second two variables

$comboLeft and$comboTop are storing the positions we calculated to place the combo control in our

GUI. The $comboLeft calculation starts with the left position of the input controls. Then it subtracts the

width of the combo control + another 10 pixels. This means it will appear 10 pixels to the left of the

input controls. Next we calculate the topmost position of the control. We want it to appear between

the two input controls so we add the top positions of those controls together and divide by two to find

the middle.

The line of code we would add to our GUI section would look like this:

With that control added out GUI now looks like this:

73 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

The complete code is getting a bit long but it is as follows:

74 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 9 Example 5

The problem is that our combo dropdown has no values. If we add the following line to beneath the line

where we created the combo control all of our mathematical operators will be available in the

dropdown:

The -1 is simply a reference to the preceding control. Because this code was placed under the combo

control it is referring to that control. What follows is a pipe delimited string of values for the combo

75 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

control (the pipe looks like a straight vertical line and is usually above the enter key on your keyboard).

The final value after the initial string and last comma is the optional default. In this case we are

defaulting to “+”.

Now our GUI has those options available:

To use our calculator function from Chapter 7 we need to add it to this script. We could use the

keyword #include for that. Refer back to Chapter 7 for that code. When we include it – we need to

make sure that we remove the last line that triggered the function – all we want is the function. If we

were to include that line it would calculate 5+3 and show us the answer before we could use our

calculator. By eliminating that last line (19), we just get the math function ready to go for whatever we

call upon it to do.

76 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

You should save that script from Chapter 7 with the math function in the same directory as your GUI and

name it “calc.au3”. To include it in our GUI script we would reference it at the top with the other

includes:

Now the math function we wrote in Chapter 7 is now available to us. Remember that we are passing

that function three arguments: first number, second number, and mathematical operator. We can get

the first and second number from our two input controls and the operator from our dropdown. This

would look like:

$firstNum=GUICtrlRead($input)

$secondNum= GUICtrlRead($input2)

$operator= GUICtrlRead($combo)

To make this work with our GUI we might alter what happens when we press the button once again as

follows:

77 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

The revised script appears as follows:

 Chapter 9 Example 6

The function in our calc.au3 file from Chapter 7 already includes a message box that will display the

answer. Therefore, we can eliminate the message box we were previously using in this area of the code.

When we run the script we see that we have built a crude calculator:

78 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

The complete code for this example is as follows:

There are many more GUI controls available. They are all detailed in the help file under GUI Control

Creation. By following the example in this chapter you should be able to add them to your scripts with

relative ease.

REMINDER: Graphical User Interfaces (GUIs sometimes pronounced gooey) allow users to interact

with your programs. AutoIt supports a wide variety of controls that can be placed on a GUI such as

inputs, combo dropdowns, buttons, and more. The parameters used when creating a control dictate the

size and position of the control relative to the GUI. When coding GUIs from hand a good practice is to

use variables for your measurements so that you can make significant changes to position of the

controls without recoding all their parameters.

Chapter 10: Introducing KODA – Drag and

Drop Graphical User Interface Tool

In Chapter 9 we explored the creation of GUIs using AutoIt functions. We tackled some of the

challenges with layouts (i.e. the relative position of controls we were using to the GUI and each other).

We used math functions to be able to have any desired changes ripple through the GUI and

automatically adjust everything. That foundation will prove useful to AutoIt script creation and for other

programming endeavors. In many programming languages it is the only way to create a user interface.

Fortunately, in AutoIt there is another way – Koda. Koda is a “forms creation tool” (forms are

sometimes how we refer to user interfaces / GUIs) that allows users to quickly create an interface by

79 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

dragging and dropping desired elements wherever they want them to be when the script runs. Koda

generates the code for this that you can incorporate into your script. It should install into your SciTE

directory as part of your AutoIt install. However, if you do not find it there you download Koda from

http://koda.darkhost.ru/page.php?id=download. Download and install the tool:

Step 1:

Click on the zip file containing the latest release from the site:

Step 2:

Unzip the file in the directory you wish to contain Koda (preferably the same one that contains SciTE).

80 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Step 3:

Double click the FD.exe application to launch Koda. You should see the following:

1. The main screen has several different menus and panels. We will focus on the five main areas

where we will do most of the work.

2. The main GUI area. This is the GUI to which you can add controls. It is resizable. To resize the

GUI simply use your mouse on any edge and hold down the left mouse key while dragging.

81 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Contrast this approach with what you would have to do when using the GUICreate function we

covered earlier (i.e. supply the exact dimensions and then use code to update them).

3. At the top of the screen are several tabs that group different types of GUI controls. You can click

through the different tabs to explore the groupings.

4. Beneath the tabs that group the controls are the controls themselves. You can hover over them

with your mouse to see their names. You should observe that they are the same types of

controls available from the standard functions within AutoIt. Adding a control is as simple as

clicking on it and “drawing” it on the GUI by holding down your left mouse button and moving

the mouse to get the desired size and shape. You can always resize after the initial control

creation in a similar fashion to resizing the GUI.

5. The fourth area is the object inspector. It is where you provide additional details that impact

the appearance and behavior of the GUI and controls. For example, you may have observed

that when Koda opened the default name of the GUI that appeared at the top in the blue bar

was “Form1”. What if you wanted it to say something more descriptive like “My First

Application v1.0”? Koda makes this task simple. You would simply set the caption property of

the Object Inspector to your desired text and watch it appear on your form as you enter it.

Now that we understand the basic areas of Koda let’s recreate our calculator GUI from Chapter 9 and

compare the effort.

Step 1: Fire up Koda and resize the default form to 300 width x 300 height. This can also be done with

the object inspector:

82 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Step 2:

Let’s create our first control – the button that was centered vertically and horizontally in our calculator.

To do this we make sure the standard control tab is activated and select the input control from that

group. Then we need to select the button icon.

Then we drag our mouse with the left hand button pressed to draw it onto the GUI. Don’t worry about

its dimensions or placement. We can correct all that with the object inspector. We want the button to

be centered vertically and horizontally just like the one we created in Chapter 9. Do you remember how

we did that? We manually calculated the left and top positions relative to the height and width of the

GUI. To do that we had to also factor in the height and width of the button itself:

Then we had to find the horizontal and vertical centers of the GUI position the button in the middle by

dividing the height and width of the button in half and subtracting it from the GUI center points.

83 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Whew, that was a lot of work! In Koda it is much easier. Before we center It we need to set the

button’s width, height, name, and “caption” (i.e. the text it will display):

Now that we have the correct properties for our button we need to center it. To do that simply right

click on the button control we will see an option called “align”. The submenu choices from align are

horizontal and vertical. We will do both:

The result is perfect placement of our button control with just a few mouse clicks:

84 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Step 3:

With our “anchor” control in place (i.e. the control that will dictate the position of our other controls

because we coded them relative to the button’s position in Chapter 9 and for no other reason – we

don’t have to do it this way) we can start to add the input and combo controls. Once again we will

navigate to the standard tab grouping in Koda. However, this time we will select the input control:

Once we select the control we will create it on the GUI by using a dragging motion on the GUI with left

mouse button depressed. Again, the exact size and shape does not matter because we will handle that

through the object explorer. Go to the object explorer and set the input box to the same width and

height it was in our calculator example. Then make sure the name of the control is the same (i.e. input

… you don’t need the “$” in the object explorer – Koda will add that for you automatically. Next, make

sure the input box is blank by deleting the text in the “text” section. Finally, use the approach to center

the control by right clicking on it and selecting the horizontal center.

85 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 A few clicks voila!

The next step is to position the first input control vertically to match our example in Chapter 9. You may

recall that we previously set the vertical position of this control with code:

86 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

The code set the top most position of the input control to that of the button less 2 x 30 (the height of

the input control) + 10 for a total of 70. If we click on the button control in Koda we can see that the top

value is set to 125. 125 – 70 = 55. Therefore, the topmost position of our first input control should be

55 which we will set in the object explorer.

Step 4:

Now let’s add the second input control. We need to follow the exact same steps we performed in Step 3

with two exceptions: (1) the name of the this input control will be “input2” and the topmost position will

be 95. How did we get 95? In Chapter 9 we used the following code:

That code sets the top of the second input control the top of the first input control + 40 (30 for the

height and another 10 for separation between the two).

Step 5:

We are almost done. The final step before we wire this GUI to our program is to create our combo box.

Once again we go to the general tab grouping for controls but this time we click on the combobox icon:

Next we bring our mouse pointer over to the GUI and create the control by dragging its approximate

shape and position. Then we make sure the combo box control is selected and we use the object

explorer to sets its shape, size, and position. In this case, we will also add the values we want to appear

in the drop down when a user interacts with the control. A quick review of the code we used in Chapter

9 gives us all the information we need to configure this last control:

The left position of the combo control is the left position of the input control less 60 (the combo control

width + 10). If we click on one of the input controls we can see the left position is 77 in the Koda object

explorer. Therefore, the left position of the combo control will be 77-60=17. The top position of the

control is sum of the top positions for our two input controls divided by two. We know from above

those two values were 55 and 95 respectively. Those add up to 150. Half of 150 is 75.

87 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Now that we have configured the size, shape, and placement of the combo control we need to set its

values. To do this we need to use a feature in the object explorer that we have not encountered to this

point … “Items”. If you click on the value next to items in the object explorer you should see a window

pop up with title of String List Editor that lets you add a series of strings. These are the values a user will

see in the drop down when they activate the control.

88 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Simply type in the arithmetic operators we used in Chapter followed by a hard return and you see the

following.

If you want to see how this will look when you run it you can always select the run command from the

Koda menu.

89 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

When you do that you should see running version of the GUI. It won’t do anything yet – but will look

like what a user would see when they run your program. You may notice that my GUI does not say the

name of the control in the box. That is because I took the extra step of deleting the text value for the

combo box control in the object explorer. Try deleting it yourself and then run the GUI afterward to see

if yours looks the same.

 Chapter 10 KodaCalculatorGUI.kxf (This is the GUI file created by Koda that you can use to see if

yours came out the same.

Step 6:

Wiring the Koda GUI to our application: so how do we get what we create in Koda into a script that we

can edit and run as part of our program? Koda has a button that we can use to generate the code which

we can then cut and paste in SciTE or our favorite text editor. If you press the button you will see a

window popup that allows you to select all of the Koda code or just portions for copying and pasting.

90 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

NOTE : You may want to select only a portion of the code if you were toggling back and forth

making minor adjustments rather than selecting the entire Koda generated text. This is especially true if

you have made any modifications to what Koda generated in your script because any such modifications

would be overwritten if you perform a wholesale copy and paste.

Press the code button. You will see a window open with the title “Code”.

The bottom of the code window has a button that says “Copy to clipboard”. Press that button then

open SciTE and paste the code.

91 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Notice that the code we pasted has several sections. First, there are the includes at the top. Those have

been automatically generated for us by Koda based on the UI elements we selected to be part of our

GUI. Next there is a block of GUI code that start and end with some comments using the hash sign (#).

That is our GUI. That code is similar to what we created by hand except Koda managed the placement

of the controls based on our settings in the object explorer instead of using variables. Finally, there is a

while loop at the bottom to listen for GUI events. You may also note that the exit event for

$GUI_EVENT_CLOSE has also been created automatically. Save the new script as KodaCalculator.au3.

There are only two remaining differences from the calculator example we created in Chapter 9. First,

we need to include “calc.au3” at the top as shown below. Make sure it is in the same directory as where

you are saving this new script. Next, open the original calculator code from Chapter 9, copy the entire

while loop, and replace the while loop for KodaCalculator.au3 with the copied while loop. The modified

code appears below.

92 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 10 Example 1

If you run this code you should see the calculator that we created in Chapter 9. Of course, the main

difference is that we create the GUI using Koda instead of coding it by hand.

REMINDER: Koda is a tool that can be used to create GUIs for your AutoIt scripts. One advantage

to using Koda is that you can drag and drop your components onto your GUI with a visual interface that

provides quick access to repositioning and sizing of controls. It also contains several features that save

time such as automatic vertical and horizontal centering. Controls named in the Koda object explorer do

not require a “$” character. The “$” will be generated automatically by Koda along with the rest of the

GUI code. Koda generated code can be copied and pasted into your script.

93 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Chapter 11: What’s in a name? String

management.

In Chapter 1 we learned about various data types including strings – text that appears within quotation

marks. You may find that when you write your scripts you may need to manipulate a string. We have

already seen examples of concatenating two strings together with the ampersand “&” operator but

what if you wanted to replace certain words? Trim off portions of a phrase or sentence? Add

delimiters, etc.? All of those things (and more) are possible with AutoIt’s built in string functions. We

will examine several of the most popular functions – the rest can be found in the AutoIt help file.

StringInStr
Searching for text within a string is a common task. AutoIt’s StiringinStr function does just that. As the

name would suggest it searches for a string (i.e. a substring) within a string. If successful, it will return

the position of the substring. The function, as documented by the AutoIt help file, appears below.

It has several parameters starting with the string that will be searched. The only other mandatory

parameter is the substring that you wish to find. You can also feed the function some optional

parameters that dictate whether or not the search is case sensitive, which occurrence you are searching

for (in the case where there is more than one), where to start the search (if you don’t want to start at

94 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

the beginning of the string, and a count should you desire to limit the number of characters searched

within the string.

Let’s take a look at this function in action. If we create a simple string and then search for a term we can

store the result in a variable and display it in a message box.

 Chapter 11 Example 1

When we run the code we will see a message box that displays the position of the substring “fox” -

which starts at the 17th character of $myString.

What would happen if we switched the substring that we are searching for to “donkey”? The message

box would show us a “0” because that is what the function returns when the search fails.

StringLen

What if we wanted to know how many characters were in our initial string (i.e. $myString)? How would

we figure that out? As you may have guessed, there is another function for that. The StringLen function

will return the length of a given string. The function has only one parameter – the string that you wish

to measure.

Let’s revise the code we used to search our string and measure it instead.

95 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 11 Example 2

If we do that we can see that our original string was 39 characters in length. The string length can be

very powerful when used in conjunction with other string functions. More on that in a moment.

StringReplace
String replace allows you to search a given string for a substring and replace it with another string. You

can optionally dictate how many replacements to make and whether or not your search is case

sensitive.

If we look at our starting string we can change fox to dog using this function.

96 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 11 Example 3

There are many practical uses for this function including instances in which you desire to change a data

file or “cleanse” it. Example: a work colleague wants to upload his or her pipe delimited file (i.e. a file

where the values are separated by pipes “|”) to a website. However, the website only accepts comma

separated files. What could you do? You could read the file and use this function to convert the pipes

to commas.

NOTE: We will cover basic file and directory management functions in the following chapter.

StringSplit
String split is another powerful function that will break a string into substrings based on a given

delimiter and return the substrings in an array. The function has two mandatory arguments: the string

that you would like to split and the text you are using to split it (i.e. the delimiter). There is also an

optional flag parameter that allows you to dictate the behavior of the split. For example, the default

behavior of the function returns an array. By default, the first element of the array contains a value

representing the number of strings returned. The implication is that your substrings start at the index of

1 instead of 0 since 0 is occupied by the count. You can change that in the flag parameter with a value

of 2 and the count will be disabled as the first element giving you a zero based index for your returned

strings.

NOTE: The optional flag parameter says “…add multiple flag values together if required:”

Therefore, if you wanted to use the $STR_ENTIRESPLIT and $STR_NOCOUNT flags together you would

set the value of the flag parameter to 3 (1) + (2).

97 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Let’s create our own example by storing a list of names separated by commas (i.e. a string) in a variable

called $names. Then we will use StringSplit to break the names into an array using the comma delimiter.

Finally, we will use an include to extend AutoIts array functionality so that we can display the results of

the array on our screen with the _ArrayDisplay function (more on that later when we cover user defined

functions or UDFs).

 Chapter 11 Example 4

98 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

We can see from the displayed array that our string contained nine names that are now stored in an

array. Why would this be useful? Now we can loop through them in the array with one of our may loop

functions from Chapter 6. For example, we could personalize a message to each person:

 Chapter 11 Example 5

StringTrimLeft
As the name would suggest, string trim left allows you to “trim” (i.e. chop off) a portion of a given string

by providing a given number of character to trim from the left hand side. It has only two parameters

both of which are mandatory. They are the string to trim, and the count which will dictate the number

of characters being trimmed. A successful operation will return the new string. If you trim too many

(i.e. go out of bounds by trimming more characters than there are) an empty string will be returned.

99 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

This function is particularly useful when used in conjunction with StringInStr and StringLen. Let’s

reexamine our original string "The quick brown fox jumped over the log". We know that the length of

the string is 39. We also know that fox appears at position 17 and is three characters long. What would

we need to do in order to trim off everything up to the word “jumped”?

 Chapter 11 Example 6

We would need to create a new variable to store the trimmed string returned from the StringTrimLeft

function and trim the number of characters returned by our initial search + 3 (to cover the “o”, “x” and

whitespace. Is there another way where we would not have to manually count the number of

100 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

characters to get our desired result? How about if we stored the search term in a variable and

measured its length with a function? Then we could add that value to the value returned from our

search. It would accomplish the same thing. It might look something like this:

 Chapter 11 Example 7

You can start to envision different ways to use the functions with another. Now what would you do if

you wanted to trim some characters from the right hand side?

StringTrimRight

StringTrimRight works the same way as StringTrimLeft but the trimming is calculated from the right side

instead of the left:

We know we want to chop off the word “log” from the right side and that the word log is three

characters. It might look something like this:

101 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 11 Example 8

StringLeft and StringRight

NOTE: StringLeft is not the same as StringTrimLeft. It is a different function that we have not

covered. StringLeft returns the leftmost portion of a string based on the number of characters

provided. It has a counterpart function StringRight that does the same thing but from the right hand

side of the string (which is also different from StringTrimRight).

The functions are different from their trim counterparts but can still be used for that purpose (as well as

other purposes). For example, if you want to trim from the right instead of the left while you could use

StringTrimRight the AutoIt help file points out you could use also use StringLeft and do something like

this: StringLeft($str, StringLen($str) - $n) where $str is the string to be evaluated and $n is the number of

characters to from the left position to return as a new string.

What if we want to chop off the word log again from the end of our sentence using these functions

instead of StringTrimRight? Let’s try it:

mk:@MSITStore:C:/Program%20Files%20(x86)/AutoIt3/AutoIt.chm::/html/functions/StringLeft.htm
mk:@MSITStore:C:/Program%20Files%20(x86)/AutoIt3/AutoIt.chm::/html/functions/StringLen.htm

102 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 11 Example 9

You can see that in this example we have successfully returned a new string without the word “log.

The simplified approach did not worry about creating a search term and measuring its length because in

this case it was all very manageable. The more complex examples were provided because it won’t

always be that simple. You may need to create several measurements and user a variety of functions to

create your desired outcome.

REMINDER: You may have need in your coding to manipulate strings. There are many powerful

string functions built into AutoIt that can be used to do things like measure, search, split, and trim

strings. You may need to use several functions in concert to obtain your desired result.

Chapter 12: Files and Directories

It won’t be long until you’ll have a need to create files, read them, move them etc. You will also need to

understand how to work with the directories where the files are stored. As in past chapters we will

focus on some of the more popular functions to get you up and running with files and directories.

Files

File creation – FileOpen / FileWrite / FileClose
We have already created a slew of variables that we used to store different pieces of data within our

scripts. But that information is stored in the program with no way to “get it out”. Moreover, when the

program closes the information is lost. One way to produce externally accessible information and save it

on a more permanent basis is to create a file and write the information to it. There are three steps to

creating a file with AutoIt. First, we have to “open” a new file with the FileOpen function (which can

also be used to open an existing file). FileOpen has two parameters: the filename (which should include

103 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

the path to our file) and optional parameter of “mode” used to dictate certain options such as whether

or not we are overwriting data in a file, appending, etc.

One line of code will create our new file:

 Chapter 12 Example 1

1. This is a macro. We will cover macros in the next chapter. For now we need to understand that

this macro is a shortcut that provides the path to the directory in which our script is located. If

we did not have that shortcut we would have to use the full path such as “c:\documents and

settings\user\files\autoit\myfile.txt”. Another benefit is that our program may be run on other

people’s machines that have different folders and directories. If their folders are different your

program may not work. Using the macro ensures that whatever the path – your script will find

it. Note the use of the ampersand and the backslash before the filename. That adds the

backslash and the file name to the script path.

2. This is what we are calling the file that we are creating. In this case “myfile.txt”.

3. This is the optional mode parameter. In this case we are using 2 which signals to the function

that we would like to overwrite whatever is in the file and erase everything.

FileOpen returns the “handle” that we store in our $myFile variable when that line of code is executed.

You can use that handle for subsequent file functions.

Now we need to add some data to our file. If we pull up our example from chapter 11 we can use our

go to string: "The quick brown fox jumped over the log". That string was stored in a variable. Let’s take

that variable and write it to our newly created file using the FileWrite function. FileWrite has two

parameters the filename or filehandle.

104 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

FileWrite

 Chapter 12 Example 2

In the above example we called the FileWrite function with the handle for the filename we had created

in the first line of code – which means we are writing to the file called myfile.txt located in the same

directory as our script. The second parameter dictates what we are writing – in this case our favorite

string about the fox and log. At this point, if you searched for the file in the directory you would see it

but it would appear to be blank. Why? Because before the file can be used we must close it. If it is still

open it won’t be useable. To close it we call the function FileClose which has only one parameter

Filename/handle.

This last line of code closes the file and makes it available for use. Now if you go to your script directory

you should see the file.

If you were to open the file you should see the following:

105 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Just like that with a few lines of code we have created a file. That was a very simplistic example. What

if we wanted to create a file of the personalized greetings we generated to the console when we

explored the StringSplit function in the previous chapter. What would that look like?

 Chapter 12 Example 3

1. We create our file the same we did in the prior example. The optional mode parameter will

wipe the previous contents.

2. We use the string containing our names from Chapter 11.

3. We break the names into an array as we did in Chapter 11 using StringSplit.

4. This time, instead of writing the personalized greeting to the console that we could view in our

SciTE editor we are writing them to our file.

5. After the for loop ends the script will continue. The next thing we do is close the file.

Now when we re-open our myfile.txt file we will see the following:

106 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

This example was a bit more powerful because we were able to use a for loop to produce a larger file. In

addition, our file contains nine rows with different content on each row.

FileRead

To this point we have successfully created a file, written data to it, and “closed” it so that we could

access it and review its contents. That last step, where we manually found the file and opened it can

also be automated. FileRead is an AutoIt function that, as the name suggests, allows us to

programmatically read a file. It has one mandatory parameter for the filename / handle. It also has an

optional parameter if you want to limit the number of characters to read. If only we had a file to test

this on … oh wait, we do, we just created one.

 Chapter 12 Example 4

In the code above we created a variable called $fileIn to store the contents of the file read using the

FileRead function. The file we are reading is the same one we just created. Therefore, when we put the

contents of the $fileIn variable into a message box we see the following:

107 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

NOTE: if you are only interested in reading a single line from the file try FileReadLine instead. It has

a parameter for the filename / handle and an optional parameter for a specific line.

FileCopy

FileCopy is worth mentioning. It allows you to create a copy of a given file. It has three parameters:

source (i.e. the source file you wish to copy), dest (the destination to place the copy) and a flag that

allows you to dictate whether or not the copy will refrain from overwriting, overwrite, and/or create a

path if the path you provided does not exist. A ingle line of code can create a duplicate of our file and

place it on our desktop:

 Chapter 12 Example 5

You may notice that this example introduces a second macro – @DesktopDir which is a path to the users

desktop directory. If you run that line of code you will find a copy of the file we created on your

desktop.

REMINDER: we will cover macros in the following chapter.

108 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

FileOpenDialog

There is another nifty file function that will open up a browse for file or directory window so a user can

select a given file. It is the FileOpenDialog function. The AutoIt help file shows the parameters this

function accepts and their meaning.

Instead of hard coding the file that we wanted to read in our previous example we could have allowed a

user to browse for it and select it.

109 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 12 Example 6

That code will create a new file open dialog box with a title of “Select File” that will default to displaying

the available files in the initial directory we specified – in this case our script directory. The last

parameter is a filter. In our case we are only interested in viewing text files. If you run the code, and

you still have the file we created earlier the chapter in your script directory, you should see the

following:

Directories
Directories are the folder structures in which files are stored. The standard functions in AutoIt allow us

to copy, create, move, remove, and get the size of directories. You might note that there is no option to

rename them. AutoIt does not have a separate function for renaming directories so you need to

110 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

DirMove (to move a directory) to rename it (the same is true of files which must rely upon FileMove for

file renaming).

DirCreate
The DirCreate function creates a directory and has a single argument for path which will dictate the path

of your new folder. We can create a new directory with a single line of code as follows:

 Chapter 12 Example 7

Now if you look in the directory where your script is located you should see a new folder called “new

folder”.

DirGetSize
The folder is currently empty so we would expect it to have a size of zero. Sure enough, if we use the

function that is exactly what we will see.

 Chapter 12 Example 8

If we wanted to add a file and re-measure the size of the directory we could make a copy of our text file

and place it in the directory as follows:

111 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 12 Example 9

Now the directory has a size of 347 bytes because it contains a copy of the text file that we created

earlier.

Let’s kill two birds with one stone and rename our directory. We know that there is no function for this

so we need to use DirMove. If the source and target destinations are the same we should be able to

rename it without actually changing its location.

 Chapter 12 Example 10

That single line of code “moved” the directory with a target that contained a new name. If you look in

your script directory you should see that the name of the directory changed. Now if want to undo all

that we can delete the directory with a single line of code.

 Chapter 12 Example 11

Note the use of the optional parameter called “recurse” (you will see it referred by that name in the

AutoIt help file). The default behavior of the DirRemove function is to delete a folder only if it is empty.

We placed a copy of our text file in the folder. Therefore, the function will not work unless we pass a

flag saying that we would also like it to delete the folders contents. If you run that code you should see

112 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

that the directory is no longer present in your scripts folder. WARNING: be careful with delete functions

– you could wipe out unintended files if you’re not careful.

Drives
Disk management is also part of the same grouping of functions that deal with files and directories.

However, instead of dealing with files and folders these functions address all things disk. For example, if

you wanted to know how much free space you had on your “C:\” drive all you could do the following:

 Chapter 12 Example 12

The free space is returned as a value in Megabytes.

DriveGetDrive
If you want to create an array of all your drives you could use the DriveGetDrive function. It has a single

parameter for “type” that dictates which drives are returned. You could do everything from ALL to

those that removable, CD ROM, network, etc.

 Chapter 12 Example 13

113 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

The above code shows 2 drives (the first element in the array is the number of drives). The two drives

are c: and d: respectively.

NOTE: There is a little drive goodie function tucked away under “Misc. Management” in the help file

called “CDTray”. It lets you automatically open and close the CD Drive on your computer with code. The

function has two parameters: the drive and the status. The status can be either “open” or “closed”. Try

it out: CDTray ("drive", "status").

REMINDER: We can create files, add content, read, copy, move and delete them all from our

code. We can also perform a handful of similar operations with directories. Finally, we can get

information about disk drives. We also learned that there is no renaming function for files or directories

so we must use FileMove and DirMove respectively to rename files and directories.

Chapter 13: Macros

We have already used some macros in our scripts. In Chapter 6 we were exposed to @CRLF which is the

macro for a hard carriage return. Later we explored @ScriptDir and @DesktopDir as shortcuts for the

paths to our script and desktop directories respectively. There are currently 102 different macros in

the AutoIt language. All are preceded by the “@” character to distinguish them from other variables

and all are documented in Macro Reference section of the help file. In addition, they are grouped by

Autoit-related, Directory, System Info, and Time and Date macros. We will examine a handful of the

more popular macros from each grouping.

AutoIt-related macros
We have already covered one example of common AutoIt-related macros. Specifically, @ScriptDir. The

macro we use to get the directory path of our scripts. Another prominent macro in this category is:

@error
You will see reference to @error throughout the AutoIt help file. It obtains the status of the error flag

set by SetError(). Many of the functions used throughout AutoIt return values that indicate success or

failure. However, many of them also set the error flag that can be retrieved with this macro. Consider

the example of GUICreate that encountered in Chapter 9. If that function fails it will return “0 if the

window cannot be created and sets the @error flag to 1.” This means that you can check for the

returned value of 0 or the @error value of 1 to see if the GUI creation failed.

Directory macros
We have already used @DesktopDir to place a copy of a file we created on our desktop using FileCopy.

The following is a complete listing of directory macros from the help file:

114 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

115 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

REMINDER: Directory macros are shortcuts to popular directories that circumvent the need to

type in the entire path. They are also dynamic enough to find the paths on other users computers.

System Info macros
The following is a complete list of the System Info macros from the AutoIt help file.

Let’s use one of these in an example to find out the version of our operating system. A single line of

code with a macro can display our results in a message box.

116 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 13 Example 1

As you can see from the output above, my machine is currently running Windows version 8.1.

Time and Date macros
Time and date macros can be used to find the current second, minute, hour, day, month, year etc. The

following is a complete listing of these macros from the AutoIt help file:

If we wanted to display the current date we could do something like this:

 Chapter 13 Example 2

117 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 13 Example 3

If we wanted to create the date with a timestamp we might alter that a bit as follows:

REMINDER: macros are predefined variables that provide shortcuts to certain system information.

They are preceded by an @ as opposed to a $ to avoid confusion with other variables.

Chapter 14: User defined functions

User defined functions, sometimes referred to as UDFs, are functions created by users in the AutoIt

community that can be included in your scripts through the creation of custom functions discussed in

Chapter 7. These UDF take two forms: those that come with AutoIt and are referenced in the help file

and those that do not. We have already seen an example of the former when we included the Array.au3

UDF so that we could use the function _ArrayDisplay. In this case, we found a well-documented UDF in

the AutoIt help file with a complete listing of all its functions. The UDF functions that come with AutoIt

look like other standard functions in all material respects except they are preceded by an underscore –

just like the custom functions we wrote in Chapter 7. The reason that the UDF functions appear to be so

similar and are part of the standard documentation and files that are downloaded with AutoIt is because

they were created and maintained by power users within the AutoIt community and deemed valuable

enough to be made available to everyone as part of the standard package. There are however, many

more UDFs available – many of which are equally powerful and useful but they are not part of the

standard download. You can find them in AutoIt forums as attachments to posts or in the forum

download section. They are maintained there by the authors and you can find them by searching the

forum. Forum members will often recommend them if you create a post that could be solved through

the use of a UDF.

We can’t cover every UDF in this section as the UDFs are larger than the actual help file at this point.

However, we can pick out a few key UDFs to expand on some of the earlier concepts that we have

discussed. Let’s start with a closer examination of

Array.au3
We learned about arrays in Chapter 8. If you reflect back on that information you may note that we did

not address any specific functions relating to arrays. Why? Because most of the array functions are

handled by the Array.au3 UDF (which we had not covered at that point). If you expand the User Defined

Function Reference at the bottom of your help file you will see Array Management at the top of the

tree. If you expand that section you will see a series of functions that allow you to do all sorts of things

with arrays including display (we have already seen this), sort, search and more.

118 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

_ArrayDisplay

If we create a new array of popular fruits we can revisit the _ArrayDisplay function:

 Chapter 14 Example 1

Every function in the Array Management UDF will require the UDF be included in your script. The first

line of the above example includes the file needed to access the additional functions. Next, we created

an array containing ten popular fruits. The array has a zero based index so it is numbered 0 – 9 but it

contains 10 values in all. Finally, we called then _ArrayDisplay function and passed it the only

mandatory parameter of an array that we want to display. The result is that we see a listview window

open with the values of our array. This function is especially useful when you are debugging your

scripts. It allows you to visualize the contents of an array and validate that the arrays are formed the

way you had intended. If they are not, you can often get an error that you are trying to access

information that is outside the bounds of the array. Those errors can be difficult to resolve when you

can’t see the array to better understand the problem.

_ArraySearch

The _ArraySearch function allows us to search a given array for a value. If successful the index (position

in the array) for that value will be returned. If unsuccessful the error flag will be set with information as

to the cause of the failure. You can use the @error macro from Chapter 13 to explore the cause of the

failure in more detail.

119 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 14 Example 2

Using _ArraySearch on our fruits array we can search for the term “grape”. Grape is the fourth item in

the array. However, because the array has a zero based index the index position for “grape” is 3.

NOTE: _ArrayFindAll is another search function that will return an array of all the indices (positions)

of the searched term. You can use this function when you are looking for more than one occurrence.

_ArraySort

NOTE: the values contained in our array appear in the order in which they were entered. They are

not sorted by default.

What if wanted to sort the contents of our array alphabetically? We could use the _ArraySort function.

Let’s try it and combine it with _ArrayDisplay to see the results.

 Chapter 14 Example 3

As you can see, adding a line of code with the _ArraySort function alphabetized the contents of our

array.

120 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

File Management
The file management UDF contains a handful of powerful functions relating to files and directories. We

had to include the array UDF in order to use the array management functions. Likewise, in order to use

the file functions under the file management UDF we need to include the UDF in our script with the

following: #include <File.au3>.

_FileListToArray

_FileListToArray is very useful as it will return an array of all files and folders (or just one or the other

based on your parameters) for a given path. It also has options to filter the results and return the full

path for each entry.

If we use the _FileListToArray function and look for everything (using the “*” as our filter which means

all) in the Windows directory (with one of our handy macros from Chapter 13) we can also use a flag (2)

to limit the contents of the array to directories. When we run this code we can see that the function

found 71 directories in my version of Windows under the windows folder.

121 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 14 Example 4

_FilePrint

_FilePrint enables us to print a text file to our default printer. We can test this function on the file that

we created in Chapter 12. If you deleted that file you can recreate it with the script we used - or just

choose a different text file. Just make sure it is in the same directory as the code below.

 Chapter 14 Example 5

Here again, there are many more functions to explore in this UDF. These are just a couple that you have

occasion to use early on in your scripting.

GUI UDFs

Most of the GUI components have a UDF that extends their capabilities. They are all grouped under GUI

Reference in the latest help file. That grouping includes sub-folders for specific components. You may

find that if you want to make a GUI control do something – and it is not clear from the standard help file

function as to how to do it – it may be the case that someone has made a UDF for it.

122 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

GUI reference directory and sub directories from the AutoIt help file

SQLite
We have already discussed file creation in Chapter 12. We covered how to create files and read the

information back into your program. However, that may not be the best way to store and retrieve

information for you application. If you application stores a lot of data and needs to query it you may

find that you need to use a database. SQLite is a truly free open source database.4 The authors have

renounced any ownership and have placed it in the public domain. That means you are free to use it in

your projects. To do that, you can use the SQLIte UDF.

NOTE: The use of SQLite requires you to write Structured Query Language (SQL) statements using

SQLite’s syntax. The database is well documented on their website. However, it is not very intuitive.

The good news is that the database is so widely used that a simple Google search for what you are trying

to do will usually yield strong results. You can also post your questions to the AutoIt forum.

4
 All of the code and documentation in SQLite has been dedicated to the public domain by the authors. All code

authors, and representatives of the companies they work for, have signed affidavits dedicating their contributions
to the public domain and originals of those signed affidavits are stored in a firesafe at the main offices of Hwaci.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute the original SQLite code, either in source
code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means.
http://www.sqlite.org/copyright.html

http://en.wikipedia.org/wiki/Public_Domain
http://www.hwaci.com/
http://www.sqlite.org/copyright.html

123 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

SQLite has two different modes that can be used in your application. It can be run “in-memory” which

means that the database you are creating is temporary – only available while the program is running –

or you can create a physical database that will store the data “offline” when the program exits and be

available the next time the program is started. Let’s create one of each and, though it is beyond the

scope of this text, create a simple query from the database. We will use the code in the AutoIt help file

for both examples.

In-memory database

If you navigate to _SQLite_Exec in the help file you will see the code below:

 Chapter 14 Example 6

1.) This loads the SQLite.dll. A “DLL” is a Dynamic Link Library – a collection of functions that can be

used by more than one program. It is a lot like a script that you include in your program except

is compiled into a specific format and cannot be modified.

2.) This creates our database. It is worth noting that since we are not passing any parameters this

will be an in-memory database. If we passed optional parameters for a filename, as we will do

in the next example, it would be a physical database.

3.) The _SQLite_Exec function executes SQLite statements (that is database speak for runs them).

In this case, the statement that is being executed is creating a table (a collection of rows and

columns similar to what you may envision in a spreadsheet but they can contain different

124 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

datatypes and be queried). It is also conveniently inserting some data into the table that we can

retrieve in the next step.

4.) The statement being executed in this line of code is selecting everything in the table by row id

(the row number in the metaphorical spreadsheet we envisioned) . Then it is calling a custom

function at the end called “_cb” which is an abbreviation for “callback”. The callback function is

an optional parameter that allows you to call another function for each row. In this case the

callback function is using a for loop to write the contents of the query to the console.

5.) This is the callback function referenced in #4 above.

NOTE: the use of the for loop use on this line of code. It differs from the others that we

covered in Chapter 6. It is a special kind of a for loop referred to as For … In … Next. It allows us

to enumerate elements in an object collection or an array (from the AutoIt help file). That is a

fancy way of saying do something for as many times as there are elements in an array or an

object.

NOTE: Objects in this context are data structures that we have not covered. For now all we

need to understand is that they can hold collections of information similar to an array.

6.) This closes the open database.

7.) This unloads the SQLite.dll.

When you run the code in this example you will see the output that is commented out at the bottom of

the screen appear in your console. The output contains all the information in our in-memory database.

Physical database

To create the same example but make the database a physical database that we can re-use we need to

change the code in step 2.

We know the @ScriptDir macro from Chapter 13. Using it as part of this parameter will place a copy of

the newly created database in the same directory as our script. Once we do that we can modify our

example to read the physical database and output the results the exact same way:

125 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 14 Example 7

The two major differences in this example are: (1) we are opening a copy of the physical database that

we created when we changed line 2 (we would have had to run that code for it to be there), and (2) we

removed the creation of the table and data because they already exist when we saved our physical

database. Now we are opening up that database, reading its contents, and displaying them just as we

did for the in-memory version.

Chapter 15: Automating other applications

The help file introduces AutoIt as “… a freeware BASIC-like scripting language designed for automating

the Windows GUI and general scripting.” So far we have focused on the general scripting side of AutoIt

because the information is very similar to other languages and provides a nice foundation for

introductory programming techniques. This chapter will explore the other main design tenant of AutoIt

- the automation of other applications.

There are many ways to automate other applications with AutoIt. We’ll focus on two main categories:

sending commands to existing windows and controls and use of application interfaces with existing

UDFs.

Sending commands to existing windows and controls (targets) requires that we either identify the

targets or that we send a series of keystrokes. Identifying the targets and interacting with them is a

more reliable methodology. Just know that some programs may be written with technologies that

make it more difficult to identify their controls in a way that is conducive to automation. There are

126 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

some advanced techniques for those types of situations but our focus will be basic Windows form

similar to the GUIs that we created in Chapters 9 & 10.5

Windows Management
AutoIt has many pre-built functions for interacting with windows. To get started we will need to open a

couple of windows so that we can control them. Let’s start with two that everyone should have:

notepad and calculator. Locate those applications on your PC and start them up. You should see the

following:

5
 One such advanced technique is the use of Microsoft’s UIAutomation framework. There is an existing UDF for

this that has been “pinned” in the AutoIt forum’s example scripts – meaning it appears at the top in that area of
the forum: http://www.autoitscript.com/forum/topic/153520-iuiautomation-ms-framework-automate-chrome-ff-
ie/

127 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Notice that each application has a title at the top of the window - "Untitled - Notepad" and "Calculator"

respectively. It is also important to understand that when you click on the window for notepad or

calculator the window is “activated” and takes on a slightly different color. An activated window will be

the default recipient of all your keystrokes. If you were to activate notepad with a mouse click and then

start typing that text would appear within the notepad application. The same thing would happen for

the calculator application except it would only accept certain values (i.e. numbers). Meanwhile, if you

were to click somewhere else on your desktop the window that was activated would still be there – but

it would be deactivated.

WinAcvitate

With our two programs running we can write a simple script to activate one window and then the other.

The WinActivate function will do this for us and accepts the parameter “title/hWnd/class” to identify the

window. The title is self-explanatory; we already know that this will either be "Untitled - Notepad" or

"Calculator". The help file offers a detailed explanation of hWnd: “The variant datatype in AutoIt

natively supports window handles (HWNDs). A window handle is a special value that Windows assigns

to windows each time they are created. When you have a handle you may use it in place of the title

parameter in any of the function calls that use the title/text convention. The advantage of using

window handles is that if you have multiple copies of an application open which have the same title/text

then you can uniquely identify them using handles.”6 Class refers to the “… internal window classname”.

Any one of those three values will allow us to activate the windows.

6
 From the Window Titles and Text (Advanced) section of the AutoIt help file.

128 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 15 Example 1

Sleep

If you run the above code you will activate the notepad window, then there will be a two second delay,

and then the calculator window will activate. Activating the windows with WinActivate is pretty well

understood but why and how did we create the two second delay? We used a delay because If we did

not we might not be able to detect the change from activating notepad and then the calculator because

the program would execute in the instructions very quickly. Therefore, we used a function called

“sleep” that accepts milliseconds (thousandths of a second) as a parameter. By using 2000 milliseconds

we created a two second delay.

NOTE: On success the function will return a handle for the activated window. The handle will be

stored in the variables that we created called $notepad and $calculator respectively. We can use those

handles for additional function calls to further interact with the windows.

WinClose

If we want to close a window we can use the WinClose function. We can modify our code above to add

an additional line that will close notepad after calculator is activated. However, this time, we can use

notepad’s handle that we captured from its activation.

 Chapter 15 Example 2

Now our program will activate notepad, pause, activate calculator, then close notepad using its handle.

WinWaitActivate

You will invariably want to do more than simply activate a window. The activation is what sets you up to

send instructions to the window. Sometimes you may incur a small delay while your window is opening

For example – a program that says “loading” or one that takes a few seconds to fully appear before you

can start to use it. What would happen if you started to send instructions to that window before it was

ready? It would not be able to receive all the instructions. Therefore, we may want to use an activation

that pauses the rest of our script until the targeted window becomes active. That is exactly what

WinWaitActivate does.

129 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

You may notice that the parameters of WinWaitActivate are very similar to those of WinActivate except

there is an additional optional parameter for timeout. What would happen if you paused your script to

wait for a window to become activated but it never did (maybe it was not open and you forgot to open

it)? Your script would “hang” (become paused indefinitely). Therefore, it is a good idea to use a timeout

parameter that will abandon the paused state after so many seconds if the window has not become

activated.

NOTE: The timeout parameter is stated in seconds for this function. Some functions (most) use

seconds while others may use milliseconds (i.e. sleep). Always be careful to check the unit of time

measure for these functions.

NOTE: Autoit has a function to set certain options aptly named “AutoItSetOption”. One such

option is to set the windows title matching mode as follows:

Opt("WinTitleMatchMode", 1) ;1=start, 2=subStr, 3=exact, 4=advanced, -1 to -4=Nocase

This option is handy when differentiating between situations where you know the exact title, a portion

of the title, and whether or not it is case sensitive, etc.

Send
The send function sends simulated keystrokes to the active window. Let’s re-open notepad and alter

our code a bit to send some text to it.

130 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 15 Example 3

Running the above code will activate an existing notepad window (i.e. one that we have already

opened), wait until it is active, and then send the text “Learning about automation is fun”. The sent text

will appear in notepad after the program is run because that is the active window.

What would happen if for some reason we did not wait for that window to become active or if the

timeout delay ended and the window was still not active (perhaps because the program was not

running?). If we use the timeout parameter the script would continue and send the simulated

keystrokes to the active window – whatever that may be – which could cause some strange things to

happen. Therefore, you need to careful when using send.

NOTE: we also could have started notepad from our code instead of opening it first by hand and

then activating the windows. To do that we could use the Run function.

 Chapter 15 Example 4

Run

Run is used to run external programs. In this case we could use it to run notepad with the above code,

wait for the window to become active (we are more likely to incur a delay when we run it from scratch

then if it were already open) and send our keystrokes.

131 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Send supports many different combinations to simulate different types of keystrokes. For example,

notepad contains a shortcut to the file menu in the form of pressing ALT + F. The exclamation point “!”

simulates the ALT key so sending “!F” would send ALT+F. Let’s try it.

 Chapter 15 Example 5

Running the above code ran an instance of notepad, waited for the window to become active, and then

sent ALT+F to the activated window. This resulted in the activation of notepad’s file menu.

You can refer to the help file for a complete listing of all send key combinations and approaches.

Updating controls
At this point we can manipulate windows and send simulated keystrokes to the active window. We can

also use keys in order to open a menu item that has a shortcut before sending additional simulated

keystrokes. That is all good stuff but what if we wanted to update a specific input control? If we

created the control from within our application then it would be easy – we could use the control handle

returned to us when we created the control with the GUIControlSetData (not previously discussed but

documented in the help file) function to update it. What if we wanted to update the calculator screen

and buttons with some text? Since we did not create the control we have to find its ControlID some

other way. To do this we will use a tool that ship with AutoIt called “Au3Info”. First, run the calculator

program. Next, go to SciTE and open a new or existing au3 file (if it is new you will need to save it with

an au3 extension). Finally, go to the tools menu and click on Au3Info.

132 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

If you successfully launched the tool you should see the following.

Au3Info

133 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

The finder tool is a drag-and-drop crosshair that can be used to get more information about controls in

other applications.7 If we drag the cross hair into the window of our calculator application where the

numbers appear we will get some information about the control. If we were to do that we would see

that the control has a very specific class and instance of the class.

We can repeat that same exercise and discover the names of all the numbered buttons. We might also

discover that there is a small input area above the number display that we can read. Now comes the

cool part … remember when we were sending key strokes? That process allowed us to interact with the

calculator program in a way that was consistent with its contemplated design. This meant that we could

not send text to the numbers area – it would only accept numeric values as an activated window.

However, now that we know the IDs of the individual controls we have more flexibility to send text to

them using ControlSetText. We could make a small program that would do something like this:

7
 Note: this may not always work. Some applications may be written with technologies that require another

approach. See footnote 5 re: MS UIAutomation.

134 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

We will go over the code in just a moment. However, notice that we were able to update the pane

above the numbers panel and then also send text to the area traditionally reserved for numbers only.

This is especially handy when you consider the user interface (the calculator itself) has no way to enter

non numeric values. As an added goof we changed all the numeric buttons to the number 8 from their

original values of 1-9 and 0. Let’s review the code:

135 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 15 Example 6 (with final mods for the “A” change discussed in a moment)

1.) We ran the calculator program and waited for the window to be active.

2.) We used the values obtained from Au3Info about the main numbers pane and the invisible pane

above it (where we wrote “Automate with AutoIt!) which we assigned to variables.

3.) We set the text of the two panes to “Yeah!!!” and “Automate with AutoIt!” respectively.

4.) We used the Au3Info tool to get the class names and instances for all the numeric buttons on

the calculator and assigned them to variables.

5.) We created an array that stores all 10 button variables – it is cut off in the above picture. The

full text looks like this:

$btnArray[10]=[$controlOneBtn,$controlTwoBtn,$controlThreeBtn,$controlFourBtn,$controlFiv

eBtn,$controlSixBtn,$controlSevenBtn,$controlEightBtn,$controlNineBtn,$controlZeroBtn]

6.) We created a variable that holds the text we used to replace all the previous text on the buttons

(i.e. 1-9 and 0). This way we could change the buttons to any other value if we re-run it.

7.) We used a for loop to loop through the array containing the buttons and change their text to the

text stored in our variable. The array is a zero based array meaning the first value is stored in

136 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

the “0” index. Therefore, our loop will run from “0” to the upper bound of the array (which is 10

because there are 10 buttons) less one. That is because, as we learned earlier though there are

ten pieces of information the last one is stored at position nine (0-9 = 10 items). Finally we used

ControlSetText to set text to the control. This is an example of using arrays in our code to save a

lot of time. The alternative could have been to write 10 lines of code each of which would have

had to have been customized. Instead, we were able to loop through the array and use

variables so that if wanted to change them to anything else in the future it would be easy. For

example – if we change the “8” in our $text variable to “A” it would look like this:

ControlSetText

ControlSetText requires the title of the window that we want to access (in this case “Calculator”) and

the text of the window (which we left as blank). The controlID is the class that we found using Au3Info

which we are storing in our variables. Finally, the last parameter is the text we want to set on the

control (in our case this came from our $text variable).

137 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

NOTE: even though we changed the text on the controls we did not impact their underlying

functions. Therefore, the 1 -9 and 0 buttons would all still produce their true values on the screen. All

we did was change the text on the buttons.

ControlCommand

Sometimes setting the text of a control is enough. You may want to send it commands. We have

already seen that you can simulate this with send. You can also use ControlCommand to send

commands to certain controls. Let’s add the following to the end of our calculator application:

 Chapter 15 Example 7

The comments in the above code explain what we are doing. First, because this code is placed at the

end of our existing program that changed the numbers on the calculator we are adding a two second

delay with sleep so that we can still observe our updated controls. Then we are using send to invoke the

shortcut that switches the calculator into scientific mode. That may take a second or two so we wait for

that window to become active again before we send a command to the scientific calculator to switch to

radians. This last step uses ControlCommand. The first three parameters are similar to those found in

ControlSetText. However, the last parameter is from a list of possible commands found in the help file.

The final result will look like this:

138 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

ControlSend

This function works similar to Send but instead of sending the keystrokes to the active window it sends

the directly to a specific window / control. Therefore, unlike ControlSetText we can’t use it to do things

that were not intended by the original program. That means we can only send keystrokes to the

calculator that it would understand. To do this we could use the following code:

The above code would make the number pane on the initial calculator screen show “99999”. What

would happen if we tried to send “Hello World to that control? It may not understand what we are

sending and it could throw an error:

139 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

NOTE: Compare to ControlSetText where we forced the text on the control instead of sending

simulated keystrokes to it.

Mouse Management
We have already covered sending opening programs, simulating keystrokes, and even interacting with

windows and controls directly. However, sometimes you may have a need to simulate mouse

movements and clicks. The help file has an entire section on this topic and lists several useful

functions. We will cover MouseGetPos and MouseMove as running those two functions will be benign

whereas some of the other functions would simulate mouse clicks somewhere on your screen and we all

have different screens so you can explore those on your own.

140 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

MouseGetPos

MouseGetPos will return the X (horizontal), Y (vertical) coordinates of your mouse on your screen. The

results will be stored in an array with the $array[0] position representing x and the $array[1] position

representing y.

MouseMove

MouseMove will move your move your mouse to a given x,y coordinate at an optionally supplied speed.

 Chapter 15 Example 8

The above code determines the current position of the mouse and returns the X, Y coordinates in an

array. Then it moves the mouse 100 pixels to the right and 100 pixels down. Notice the Sleep(2000) at

the start. That is a two second delay in case you want to position your mouse after you start the script.

External application UDFs
Another useful way to work with external applications is through User Defined Functions (UDFs). We

already saw this when we covered UDFs in Chapter 14. Do you recall the SQLite UDF that allowed us to

create in-memory and physical databases with SQLite? That was an example of using a UDF with an

external application. AutoIt ships with several UDFs that allow you to manipulate other applications

such as Excel and Word. There are also many more UDFs that automate external applications which

have been posted on the forum by various users.

But how do they work? Most of these UDFs are using an application programming interface (i.e. specific

functions that are allowed to interact with other programs). The beauty of the UDFs is that they hide

much of this complexity. Though it would be useful, you don’t need to understand the functions at the

code level to use them. You can simply include the functions in your script and enjoy the benefits.

Excel UDF

NOTE: You will need to have Microsoft Excel installed on your PC to test these scripts.

The Excel UDF allows you to open up a new or existing Excel workbook and then automate a host of

useful functions.

The first thing we need to do is open a new instance of Excel to obtain a reference to the Excel object

that we intend to automate.

141 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

_Excel_Open

This function allows us to create a new instance of Excel or connect to a new one. All of its parameters

are optional and control the visibility, alerts, etc. To create a new Excel instance all we have to do is

type the following:

 Chapter 15 Example 9

Upon successful completion the function will return an Excel application object which we will store in

the $oExcel variable. Next, we need to create a new instance of an Excel workbook. For that we will

use _Excel_BookNew.

142 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

_Excel_BookNew

Let’s use a couple of lines of code to create an Excel object and open a workbook:

 Chapter 15 Example 10

1. This is a reference to the Excel UDF that must be included in our script in order for us to have

access to its functions.

2. This creates the Excel application object.

3. This creates an Excel workbook and optionally specifies that it should have three sheets.

If you run this code on a machine that has Excel installed you should see the application pop open with

new workbook containing three sheets.

143 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Opening a new copy of Excel and a blank workbook is a pretty good trick but we will need to do more

than that if our program is to be useful. The ability to read and write to and from a spreadsheet will

open up a lot of automation opportunities especially if were to combine those operations with some of

the concepts from prior chapters such as loops and string management.

NOTE: by using arrays, loops, and string management along with Excel automation we can create

powerful data cleansing / transformation programs.

Let’s add some data to our blank workbook to demonstrate some additional concepts of the Excel UDF.

You may remember our $people array from Chapter 8. We have re-created it in the code snippet below.

After we create the array we use _Excel_RangeWrite to write the data to the workbook. If you run the

code snippet below you should see the data added to the workbook.

144 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 15 Example 11

Let’s take a closer look at the _Excel_RangeWrite function:

145 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Excel_RangeWrite

The function can be used to write values or formula to a specific cell or to a range of cells on a specified

worksheet within a workbook. In our case, we wrote an array to worksheet 1. The code looked like this:

_Excel_RangeWrite($workbook,1,$people)

That code supplies the first three mandatory parameters: the workbook object, which sheet to write to,

and the value to be written. Note that the second parameter could be the name of the sheet (as in

“Sheet1”, an index (which is what we used when we supplied 1 to as a reference to the first sheet, or a

worksheet object. The value could be string or an array. In our case it was an array containing names

and ages.

Did you notice that our array started in the first row and column of the worksheet (i.e. A1)? What if we

wanted it to start on B2 instead? Adding the optional fourth parameter for range could help us do

exactly that:

Now, having specified we want to start at B2 our results would look like this:

Now the data is written to B2 as a starting point:

146 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

After we add some data to our workbook we may want to save it under a different name. To do that we

can use the _Excel_BookSaveAs function.

147 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

_Excel_BookSaveAs

Using this function we can save our workbook to our script directory and call it names.xlsx with the

following code:

 Chapter 15 Example 12

In the above code we have supplied a reference to the workbook and the path, including the filename,

used to save a copy of the workbook. We could have optionally supplied dome parameters to change

the file type of our saved workbook, specify whether or not it can be overridden, and password protect

it.

So far we have created a brand new workbook, added data to it, and saved the workbook down with a

new name. You may also have need to open an existing workbook that already contains data. For this,

you can use _Excel_BookOpen.

148 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

_Excel_BookOpen

_Excel_BookOpen will need a reference to the application object and the path and filename to the

workbook that to be opened.

 Chapter 15 Example 13

In the above example we have created a new workbook and array which we used to add data to the first

sheet in the workbook. Then we saved the workbook under the name: “names.xlsx” because the sheet

contained a bunch of names. From there we did the following:

1. This line closes the workbook that we had saved with our new name.

2. This line creates a message box that must be manually closed before the code will continue.

149 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

3. This line reopens the workbook that we had saved using _Excel_BookOpen.

The final task that we should look at to complete the circle is to read data from the workbook that we

just opened (ignoring for a moment that we are the ones who created the workbook in the first place

with data from our program). To do that, we need to use _Excel_RangeRead.

_Excel_RangeRead

_Excel_RangeRead, as the name would suggest, will allow us to read the contents of a specified range of

cells within an Excel workbook.

The function has several parameters but only a reference to the workbook is required. The default

behavior will be to read everything and display the values in an array unless you specify a specific range

and/or that you would like to read formulae or text instead. A couple of more lines added to our

example will demonstrate the function:

150 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 15 Example 14

In the above example, after we opened our saved workbook, we created a message box that prompted

us to re-open it. Then we used the “sleep” function to pause the script for two seconds (or 2000

milliseconds). After that, we read all the data the spreadsheet contained into an array. Then we

displayed that array. If run to completion we would see a listview with the array data that looks like

this:

Your functions

Once you have an object identifier you can even use it to create your own functions. However, you will

need to look at the program’s API documentation - that complexity that was so nicely hidden with the

UDF. You can use the same object identified returned with the UDF functions with your own functions.

Here is an example of a script that inserts an image into an Excel workbook:

151 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Chapter 15 Example 15

In the above code a new workbook with its own object identified was created. Then a variable was used

to store the location of the image that we wanted to paste into the excel workbook. Next, we created a

target range that would be used as the area in the worksheet where we want to insert our picture. We

then left the nice tidy world of prepackaged Excel UDF functions and used a method that we found on

the Microsoft website as part of the Excel COM API (the application programming interface we are using

to connect to and control Excel) that accepted the path parameter to our picture and the range where

we want to paste the picture as arguments. The remaining portion of the function calls the insert

picture interface and manages the position of the image.

The result looks like this:

152 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

NOTE: Custom functions to automate other applications through an application programming

interface (API) are an advanced topic. You will also need to study examples in the API documentation

and convert the code provided to AutoIt code. The Excel COM API documentation can be found here:

http://msdn.microsoft.com/en-us/library/office/ff194068%28v=office.15%29.aspx.

Chapter 16 Compiling: Making your

programs into executables

To this point we have created many scripts covering a wide variety of functions. Let’s say that we

created a great script that we wanted to share with our friends so they could run it on their computers.

How would we go about doing that? They would either have to have AutoIt installed on their machines

or we would have to compile our script into an executable (a stand-alone program). That process

transforms the code from human readable to machine readable instructions. It is what will allow others

to run your program even if they have never heard of AutoIt. There are several different ways to do

this.

First method:

AutoIt comes with a program called Aut2Exe that can be found from your start menu or within the

folder where you installed AutoIt. The program allows you to select a script to compile, a location (path)

to place the compiled program, and an icon to represent the program (if you don’t have an icon or don’t

want to make one there is a default AutoIt icon). There is also an option to compile for x64. That option

is used for newer Windows operating systems that are 64bits versions. However, most of the time you

can compile to 32bits and it will run on both. The Aut2Exe program looks like this:

http://msdn.microsoft.com/en-us/library/office/ff194068%28v=office.15%29.aspx

153 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Above image from the AutoIt help file.

Just hit the convert button after you have made all your selections.

NOTE: If your script has errors they won’t be identified in the compiling process which compiles

“as-is” – so run your script and check it before you compile.

Second Method:

You can simply right click on your script and compile it. When you do this the exe will have the same

name as the script and the last used icon will be applied (because you don’t have an opportunity to

supply options / choices for these).

Third Method:

Users can also compile scripts from the command line. The command line can be seen when you run
cmd.exe on your PC. You can also run command line functions from within your script (one way to do
that is with the built in ShellExecute function (see the help file). This means that you could create your
own script to compile scripts. A full list of the command line parameters can be found in the Autoit
help file.

154 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Chapter 17 AutoIt Forum Rules

The AutoIt forum is a fantastic place to get valuable assistance. The members are extremely helpful.

You will more than likely get a very prompt response to just about any question – as long as it conforms

to the forum rules. You can check the AutoIt forum for a complete listing but they don’t tolerate

questions about automating games (i.e. use of game “bots”), bypassing security, being disrespectful, or

any discussions about decompiling code (the practice of taking a compiled program and trying to turn it

back into a script / source code – which is usually indicative of someone trying to steal it).

You can find the forum here: https://www.autoitscript.com/forum/

There are various categories of discussion contained within the forum. Try to always post your question

in the most appropriate category. This is usually, but not always, “AutoIt General Help and Support”.

Chapter 18 Links To Source Code Examples

Used In This Text

Source now included in the Appendix to this text. It may also be downloaded
as a companion file on the AutoIt forum download page.

Chapter 19 Conclusion

Congratulations. If you made it this far you have learned the basic building blocks of programming. You

learned about different types of data, variables, operators, conditional logic, loops, GUIs and more. At

this point you may be thinking about writing your own program. You may even have an idea for

something you want to build. Keep in mind; this was an introductory text for the basics. Your ideas may

include concepts that weren’t covered. However, knowing the information contained in this text will

give the ability to figure out just about anything with a little research.

It is also important to note that these concepts don’t necessarily gel into efficient programming

overnight. It reminds me of the old joke: “How do you get to Carnegie Hall?” whose punch line is

“Practice, practice, practice”. I suppose it would be the same as someone asking “how do I learn how to

program?”

As you approach your practice projects try to break them into pieces. Any large problem is easier to

solve when you break it into pieces – coding is no exception. You can even test pieces of code outside

your main script and then incorporate them into the larger program after you are confident they are

working.

Best wishes in your programming endeavors.

https://www.autoitscript.com/forum/

155 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Appendix

This appendix contains all the source code referenced in the book. It was auto-generated to a text file

using the following script:

This example was not called out in the text – but it is the calculation I ran when discussing scientific
notation.

chapter 03 Hello Operator

Example1.au3

$firstNumber = 1.826395e7
$secondNumber =23.34e3
$answer=$firstNumber*$secondNumber
ConsoleWrite(@crlf&$answer&@CRLF)

156 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Chapter 04 Lets Program Something

Example1.au3

#include <MsgBoxConstants.au3>
MsgBox($MB_OK,"My first program","Hello World"); this is a comment - good job

Example2.au3

#include <MsgBoxConstants.au3>
$firstMessage = "Hello "
$secondMessage = "World"
MsgBox($MB_OK,"My second program",$firstMessage&$secondMessage)

Chapter 05 conditional statements

Example1.au3

#include <MsgBoxConstants.au3>
$age = 17
if $age>=18 Then
 MsgBox($MB_OK,"Voting Answer","The person can vote")
Else
 MsgBox($MB_OK,"Voting Answer","The person cannot vote")
EndIf

Example2.au3

#include <MsgBoxConstants.au3>
$age = 18
$nationality = "Canadian"

if $age>= 18 and $nationality = "US" then
 MsgBox($MB_OK,"Voting Answer","The person can vote")
Else
 MsgBox($MB_OK,"Voting Answer","The person cannot vote")
EndIf

157 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Example3.au3

#include <MsgBoxConstants.au3>
$age = 18
$nationality = "Canadian"

if $nationality = "US" then
 if $age>=18 then
 MsgBox($MB_OK,"Voting Answer","The person can vote")
 Else
 MsgBox($MB_OK,"Voting Answer","The person cannot vote")
 EndIf
Else
 MsgBox($MB_OK,"","Sorry. You are not a US citizen.")
EndIf

Example4.au3

#include <MsgBoxConstants.au3>
$expression = 5

Switch $expression
 Case 1
 $sMsg = "The value is 1"
 Case 2
 $sMsg = "The value is 2"
 Case 3
 $sMsg = "The value is 3"
 Case Else
 $sMsg = "The value is something other than 1,2,or 3"
EndSwitch

MsgBox($MB_OK, "", $sMsg)

Chapter 06 loops

Example1.au3

; ConsoleWrite example
ConsoleWrite("Hello World")

158 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Example2.au3

; ConsoleWrite example
ConsoleWrite("Hello World"&@CRLF)

Example3.au3

; ConsoleWrite example
for $a=0 to 9
ConsoleWrite("Hello World"&@CRLF)
next

Example4.au3

; ConsoleWrite example
for $a=0 to 9
ConsoleWrite("This is a: " & $a &@CRLF)
next

Example5.au3

; ConsoleWrite example
$loops = 1
for $a=0 to 1
 for $b = 0 to 9
 ConsoleWrite("This is a: " & $b &@CRLF)
 next
 ConsoleWrite("Inner loop:"&$loops& " set finsished"&@CRLF)
 $loops+=1
next

Example6.au3

; while loop example
$a=0

while $a<10
 consolewrite("$a is less then 10. The value is: "&$a&@CRLF)
 $a+=1
Wend

159 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Chapter 07 user functions

Example1.au3

; An example of a user function
#include <MsgBoxConstants.au3>

Func _myFunction()
MsgBox($MB_OK,"User Function","Hello World")

EndFunc
_myFunction()

Example2.au3

; An example of a user function
#include <MsgBoxConstants.au3>

Func _mathWithAnswers($firstNum,$secondNum,$operator)

Switch $operator
 case $operator = "+"
 $answer=$firstNum+$secondNum
 case $operator = "-"
 $answer=$firstNum-$secondNum
 case $operator = "*"
 $answer=$firstNum*$secondNum
 case $operator = "/"
EndSwitch
MsgBox($MB_OK,"Answer",$answer)
EndFunc

_mathWithAnswers(5,3,"+")

Example3.au3

; An example of a user function
#include <MsgBoxConstants.au3>

Func _mathWithAnswers($firstNum,$secondNum,$operator)

160 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Switch $operator
 case $operator = "+"
 $answer=$firstNum+$secondNum
 case $operator = "-"
 $answer=$firstNum-$secondNum
 case $operator = "*"
 $answer=$firstNum*$secondNum
 case $operator = "/"
 if $secondNum = 0 Then
 MsgBox($MB_OK,"Error","You cannot divide by zero")
 else
 $answer=$firstNum/$secondNum
 EndIf
EndSwitch
MsgBox($MB_OK,"Answer",$answer)
EndFunc

_mathWithAnswers(5,0,"/")

Chapter 08 Arrays

Example1.au3

#include <MsgBoxConstants.au3>
global $namesArray[3]=["John","Steve","Bob"]
MsgBox($MB_OK,"Who is second in the array?", "Answer: "&$namesArray[1])

Example2.au3

#include <MsgBoxConstants.au3>
dim $people[3][2] = [["John",34],["Steve",23],["Bob",41]]
MsgBox($MB_OK,"",$people[1][0]&" is "&$people[1][1]&" years of age")

Example3.au3

#include <MsgBoxConstants.au3>
dim $people[3][2] = [["John",34],["Steve",23],["Bob",41]]

for $a=0 to UBound($people)-1
 MsgBox($MB_OK,"",$people[$a][0]&" is "&$people[$a][1]&" years of age")
Next

161 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Chapter 09 GUIs

calc.au3

#include <MsgBoxConstants.au3>
; An example of a user function

Func _mathWithAnswers($firstNum,$secondNum,$operator)

Switch $operator
 case $operator = "+"
 $answer=$firstNum+$secondNum
 case $operator = "-"
 $answer=$firstNum-$secondNum
 case $operator = "*"
 $answer=$firstNum*$secondNum
 case $operator = "/"
 if $secondNum = 0 Then
 MsgBox($MB_OK,"Error","You cannot divide by zero")
 else
 $answer=$firstNum/$secondNum
 EndIf
EndSwitch

MsgBox($MB_OK,"Answer",$answer)
EndFunc

;_mathWithAnswers(5,0,"/")

Example1.au3

#include <GUIConstantsEx.au3>
#include <WindowsConstants.au3>
GUIcreate("Test GUI")
GUISetState(@SW_SHOW)
While 1
 $nMsg = GUIGetMsg()
 Switch $nMsg
 Case $GUI_EVENT_CLOSE
 Exit

 EndSwitch
WEnd

162 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Example2.au3

#include <GUIConstantsEx.au3>
#include <WindowsConstants.au3>
GUIcreate("Test GUI")
GUISetState(@SW_SHOW)
GUICtrlCreateButton("Push ME", 175,200,75,50)
While 1
 $nMsg = GUIGetMsg()
 Switch $nMsg
 Case $GUI_EVENT_CLOSE
 Exit

 EndSwitch
WEnd

Example3.au3

#include <MsgBoxConstants.au3>
#include <GUIConstantsEx.au3>
#include <WindowsConstants.au3>
GUIcreate("Test GUI")
GUISetState(@SW_SHOW)
$button=GUICtrlCreateButton("Push ME", 175,200,75,50)
While 1
 $nMsg = GUIGetMsg()
 Switch $nMsg
 case $button
 MsgBox($MB_OK,"Button Push","You pushed me!")
 Case $GUI_EVENT_CLOSE
 Exit

 EndSwitch
WEnd

Example4.au3

#include <MsgBoxConstants.au3>
#include <GUIConstantsEx.au3>
#include <WindowsConstants.au3>

163 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

$guiWidth=300 ; the width of our GUI
$guiHeight=300 ; the height of our GUI

$guiBtnWidth=75 ; the width of our button
$guiBtnHeight=50 ; the heighr of our button

$inputWidth=150
$inputHeight=30

$buttonTop=($guiHeight/2)-($guiBtnHeight/2)
$buttonLeft=($guiWidth/2)-($guiBtnWidth/2)
$inputLeft=($guiWidth/2)-($inputWidth/2)
$inputTop=(($guiHeight/2)-($guiBtnHeight/2))-($inputHeight+10)

GUIcreate("Test GUI",$guiWidth,$guiHeight) ; using our variables to set height & width
GUISetState(@SW_SHOW)
;on the following line we are using some math and some variables to center the button by taking into
account the
; width and height of the GUI and button
$button = GUICtrlCreateButton ("Push ME",$buttonLeft,$buttonTop,$guiBtnWidth,$guiBtnHeight)
$input=GUICtrlCreateInput("Enter text here",$inputLeft,$inputTop,$inputWidth,$inputHeight)

While 1
 $nMsg = GUIGetMsg()
 Switch $nMsg
 case $button
 MsgBox($MB_OK,"Button Push","You pushed me!")
 Case $GUI_EVENT_CLOSE
 Exit

 EndSwitch
WEnd

Example5.au3

#include <MsgBoxConstants.au3>
#include <GUIConstantsEx.au3>
#include <WindowsConstants.au3>

$guiWidth=300 ; the width of our GUI
$guiHeight=300 ; the height of our GUI

$guiBtnWidth=75 ; the width of our button
$guiBtnHeight=50 ; the height of our button

164 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

$inputWidth=150
$inputHeight=30

$buttonTop=($guiHeight/2)-($guiBtnHeight/2)
$buttonLeft=($guiWidth/2)-($guiBtnWidth/2)
$inputLeft=($guiWidth/2)-($inputWidth/2)
$inputTop= (($guiHeight/2)-($guiBtnHeight/2))-(($inputHeight*2)+10)
$input2Top=$inputTop+($inputHeight+10)

$comboWidth=50
$comboHeigh=30
$comboLeft=$inputLeft-($comboWidth+10)
$comboTop=(($inputTop+$input2Top)/2)

GUIcreate("Test GUI",$guiWidth,$guiHeight) ; using our variables to set height & width
GUISetState(@SW_SHOW)
; on the following line we are using some math and some variavles to center the button by taking into
account the
; width and height of the GUI and the button
$button = GUICtrlCreateButton ("Push ME",$buttonLeft,$buttonTop,$guiBtnWidth,$guiBtnHeight)
$input=GUICtrlCreateInput("Enter text here",$inputLeft,$inputTop,$inputWidth,$inputHeight)
$input2=GUICtrlCreateInput("Enter text here",$inputLeft,$input2Top,$inputWidth,$inputHeight)
$combo=GUICtrlCreateCombo("Oper",$comboLeft,$comboTop,$comboWidth,$comboHeigh)
While 1
 $nMsg = GUIGetMsg()
 Switch $nMsg
 case $button
 $inputcontents=GUICtrlRead($input)
 MsgBox($MB_OK,"","Text from input ",$inputcontents)
 Case $GUI_EVENT_CLOSE
 Exit

 EndSwitch
WEnd

Example6.au3

#include <GUIConstantsEx.au3>
#include <WindowsConstants.au3>
#include <calc.au3>

$guiWidth=300 ; the width of our GUI
$guiHeight=300 ; the height of our GUI

$guiBtnWidth=75 ; the width of our button

165 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

$guiBtnHeight=50 ; the height of our button

$inputWidth=150
$inputHeight=30

$buttonTop=($guiHeight/2)-($guiBtnHeight/2)
$buttonLeft=($guiWidth/2)-($guiBtnWidth/2)
$inputLeft=($guiWidth/2)-($inputWidth/2)
$inputTop= (($guiHeight/2)-($guiBtnHeight/2))-(($inputHeight*2)+10)
$input2Top=$inputTop+($inputHeight+10)

$comboWidth=50
$comboHeigh=30
$comboLeft=$inputLeft-($comboWidth+10)
$comboTop=(($inputTop+$input2Top)/2)

GUIcreate("Test GUI",$guiWidth,$guiHeight) ; using our variables to set height & width
GUISetState(@SW_SHOW)
; on the following line we are using some math and some variavles to center the button by taking into
account the
; width and height of the GUI and the button
$button = GUICtrlCreateButton ("Push ME",$buttonLeft,$buttonTop,$guiBtnWidth,$guiBtnHeight)
$input=GUICtrlCreateInput("",$inputLeft,$inputTop,$inputWidth,$inputHeight)
$input2=GUICtrlCreateInput("",$inputLeft,$input2Top,$inputWidth,$inputHeight)
$combo=GUICtrlCreateCombo("Oper",$comboLeft,$comboTop,$comboWidth,$comboHeigh)
GUICtrlSetData(-1, "+|-|/|*", "+")

;GUICtrlCreateInput(
While 1
 $nMsg = GUIGetMsg()
 Switch $nMsg
 case $button
 $firstNum=GUICtrlRead($input)
 $secondNum=GUICtrlRead($input2)
 $operator=GUICtrlRead($combo)
 _mathWithAnswers($firstNum,$secondNum,$operator)
 Case $GUI_EVENT_CLOSE
 Exit

 EndSwitch
WEnd

Chapter 10 Koda

166 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

calc.au3

#include <MsgBoxConstants.au3>
; An example of a user function

Func _mathWithAnswers($firstNum,$secondNum,$operator)

Switch $operator
 case $operator = "+"
 $answer=$firstNum+$secondNum
 case $operator = "-"
 $answer=$firstNum-$secondNum
 case $operator = "*"
 $answer=$firstNum*$secondNum
 case $operator = "/"
 if $secondNum = 0 Then
 MsgBox($MB_OK,"Error","You cannot divide by zero")
 else
 $answer=$firstNum/$secondNum
 EndIf
EndSwitch

MsgBox($MB_OK,"Answer",$answer)
EndFunc

;_mathWithAnswers(5,0,"/")

Example1.au3

#include <ButtonConstants.au3>
#include <ComboConstants.au3>
#include <EditConstants.au3>
#include <GUIConstantsEx.au3>
#include <WindowsConstants.au3>

#include <calc.au3>

#Region ### START Koda GUI section ### Form=c:\documents and settings\administrator\my
documents\book\learn to program book\learn to program book\programs\chepter
10\kodacalculatorgui.kxf
$Form1_1 = GUICreate("Form1", 301, 301, 188, 121)
$input = GUICtrlCreateInput("", 77, 55, 150, 21)
$button = GUICtrlCreateButton("Push ME", 113, 125, 75, 50)
$Input2 = GUICtrlCreateInput("", 77, 95, 150, 21)
$combo = GUICtrlCreateCombo("", 17, 75, 50, 30, BitOR($CBS_DROPDOWN,$CBS_AUTOHSCROLL))
GUICtrlSetData(-1, "+|-|/|*")
GUISetState(@SW_SHOW)

167 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

#EndRegion ### END Koda GUI section ###

;GUICtrlCreateInput(
While 1
 $nMsg = GUIGetMsg()
 Switch $nMsg
 case $button
 $firstNum=GUICtrlRead($input)
 $secondNum=GUICtrlRead($input2)
 $operator=GUICtrlRead($combo)
 _mathWithAnswers($firstNum,$secondNum,$operator)
 Case $GUI_EVENT_CLOSE
 Exit

 EndSwitch
WEnd

Chapter 11 Strings

Example1.au3

#include <MsgBoxConstants.au3>
$myString = "The quick brown fox jumped over the log"
$foxPosition = StringInStr($myString,"fox")
MsgBox($MB_OK,"",$foxPosition)

Example2.au3

#include <MsgBoxConstants.au3>
$myString = "The quick brown fox jumped over the log"
$myStringLen = StringLen($myString)
MsgBox($MB_OK,"",$myStringLen)

Example3.au3

#include <MsgBoxConstants.au3>
$myString = "The quick brown fox jumped over the log"
$newString=StringReplace($myString,"fox","dog")
MsgBox($MB_OK,"",$newString)

168 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Example4.au3

#include<Array.au3>
$names=" Bob, Jane, Sammy, David, Jonah, Billy, Duke, Lizzie, Greg"
$nameArray=StringSplit($names,",")
_ArrayDisplay($nameArray,"Names Array")

Example5.au3

#include<Array.au3>
$names=" Bob, Jane, Sammy, David, Jonah, Billy, Duke, Lizzie, Greg"
$nameArray=StringSplit($names,",")
;_ArrayDisplay($nameArray,"Names Array")

for $a=1 to UBound($nameArray)-1
 ConsoleWrite(@crlf&"This is a special message for"&$nameArray[$a]&@crlf)
Next

Example6.au3

#include <MsgBoxConstants.au3>
$myString = "The quick brown fox jumped over the log"
$foxPosition = StringInStr($myString,"fox")
$trimmedString=StringTrimLeft($myString,$foxPosition+3)
MsgBox($MB_OK,"",$trimmedString)

Example7.au3

#include <MsgBoxConstants.au3>
$myString = "The quick brown fox jumped over the log"
$searchTerm="fox"
$searchtermLen=StringLen($searchTerm)
$foxPosition = StringInStr($myString,$searchTerm)
$trimmedString=StringTrimLeft($myString,$foxPosition+$searchtermLen)
MsgBox($MB_OK,"",$trimmedString)

Example8.au3

#include <MsgBoxConstants.au3>
$myString = "The quick brown fox jumped over the log"
$newString=StringTrimRight($myString,3)
MsgBox($MB_OK,"",$newString)

169 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Example9.au3

#include <MsgBoxConstants.au3>
$myString = "The quick brown fox jumped over the log"
$trimmedString=StringLeft($myString,StringLen($myString)-3)
MsgBox($MB_OK,"",$trimmedString)

Chapter 12 files and directories

Example01.au3

$myFile = FileOpen(@ScriptDir&"\myfile.txt",2)

Example02.au3

$myFile = FileOpen(@ScriptDir&"\myfile.txt",2)
$myString = "The quick brown fox jumped over the log"
FileWrite($myFile,$myString)

Example03.au3

$myFile = FileOpen(@ScriptDir&"\myfile.txt",2)
$names=" Bob, Jane, Sammy, David, Jonah, Billy, Duke, Lizzie, Greg"
$nameArray=StringSplit($names,",")

for $a=1 to UBound($nameArray)-1
 FileWrite($myFile,@crlf&"This is a special message for"&$nameArray[$a]&@crlf)
Next
FileClose($myFile)

Example04.au3

#include <MsgBoxConstants.au3>
$fileIn = FileRead(@ScriptDir&"\myfile.txt")
MsgBox($MB_OK,"",$fileIn)

Example05.au3

170 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

FileCopy (@ScriptDir&"\myfile.txt",@DesktopDir)

Example06.au3

$file = FileOpenDialog("Select File",@ScriptDir,"Text files (*.txt)")

Example07.au3

DirCreate(@ScriptDir&"\new folder\")

Example08.au3

#include <MsgBoxConstants.au3>
$size=DirGetSize(@ScriptDir&"\new folder\")
MsgBox($MB_OK,"",$size)

Example09.au3

#include <MsgBoxConstants.au3>
FileCopy (@ScriptDir&"\myfile.txt",@ScriptDir&"\new folder\")
$size=DirGetSize(@ScriptDir&"\new folder\")
MsgBox($MB_OK,"",$size)

Example10.au3

DirMove(@ScriptDir&"\new folder\",@ScriptDir&"\new name\",1)

Example11.au3

DirRemove(@ScriptDir&"\new name\",1)

Example12.au3

#include <MsgBoxConstants.au3>
MsgBox($MB_OK,"",DriveSpaceFree("c:\"))

171 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Example13.au3

#include<Array.au3>
$driveArray=DriveGetDrive("ALL")
_ArrayDisplay($driveArray)

Chapter 13 Macros

Example1.au3

#include <MsgBoxConstants.au3>
MsgBox($MB_OK,"",@OSVersion)

Example2.au3

#include <MsgBoxConstants.au3>
MsgBox($MB_OK,"",@MON&"/"&@MDAY&"/"&@YEAR)

Example3.au3

#include <MsgBoxConstants.au3>
MsgBox($MB_OK,"",@MON&"/"&@MDAY&"/"&@YEAR&" Timestamp:
"&@HOUR&":"&@MIN&":"&@SEC)

Chapter 14 User Defined Functions

Example1.au3

#include<Array.au3>
dim $fruits[10]=["Grapefruit", "Banana", "Watermelon", "Grape", "Apple", "Guava","Star fruit",
"Mango", "Coconut", "Blueberry"]
_ArrayDisplay($fruits)

Example2.au3

#include<Array.au3>
#include <MsgBoxConstants.au3>
dim $fruits[10]=["Grapefruit", "Banana", "Watermelon", "Grape", "Apple", "Guava","Star fruit",
"Mango", "Coconut", "Blueberry"]

172 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

$grapePos=_ArraySearch($fruits,"grape")
MsgBox($MB_OK,"Position of grape",$grapePos)

Example3.au3

#include<Array.au3>
dim $fruits[10]=["Grapefruit", "Banana", "Watermelon", "Grape", "Apple", "Guava","Star fruit",
"Mango", "Coconut", "Blueberry"]
_ArraySort($fruits)
_ArrayDisplay($fruits)

Example4.au3

#include<Array.au3>
#include<File.au3>
$dirArray= _FileListToArray(@WindowsDir,"*",2)
_ArrayDisplay($dirArray,"Windows Directories")

Example5.au3

#include<File.au3>
_FilePrint(@ScriptDir&"\myfile.txt")

Example6.au3

#include <SQLite.au3>
#include <SQLite.dll.au3>

Local $hQuery, $aRow
_SQLite_Startup()
ConsoleWrite("_SQLite_LibVersion=" & _SQLite_LibVersion() & @CRLF)
_SQLite_Open()
; Without $sCallback it's a resultless statement
_SQLite_Exec(-1, "Create table tblTest (a,b int,c single not null);" & _
 "Insert into tblTest values ('1',2,3);" & _
 "Insert into tblTest values (Null,5,6);")

Local $d = _SQLite_Exec(-1, "Select rowid,* From tblTest", "_cb") ; _cb will be called for each row

Func _cb($aRow)
 For $s In $aRow
 ConsoleWrite($s & @TAB)

173 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

 Next
 ConsoleWrite(@CRLF)
 ; Return $SQLITE_ABORT ; Would Abort the process and trigger an @error in _SQLite_Exec()
EndFunc ;==>_cb
_SQLite_Close()
_SQLite_Shutdown()

; Output:
; 1 1 2 3
; 2 5 6

Example7.au3

#include <SQLite.au3>
#include <SQLite.dll.au3>

Local $hQuery, $aRow
_SQLite_Startup()
ConsoleWrite("_SQLite_LibVersion=" & _SQLite_LibVersion() & @CRLF)
_SQLite_Open(@ScriptDir&"\example.db")
Local $d = _SQLite_Exec(-1, "Select rowid,* From tblTest", "_cb") ; _cb will be called for each row

Func _cb($aRow)
 For $s In $aRow
 ConsoleWrite($s & @TAB)
 Next
 ConsoleWrite(@CRLF)
 ; Return $SQLITE_ABORT ; Would Abort the process and trigger an @error in _SQLite_Exec()
EndFunc ;==>_cb
_SQLite_Close()
_SQLite_Shutdown()

; Output:
; 1 1 2 3
; 2 5 6

Chapter 15 Automating prgrams

Example01.au3

$notepad=WinActivate("Untitled - Notepad")
sleep(2000)
$calculator=WinActivate("Calculator")

174 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

Example02.au3

$notepad=WinActivate("Untitled - Notepad")
sleep(2000)
$calculator=WinActivate("Calculator")

WinClose($notepad)

Example03.au3

$notepad=WinActivate("Untitled - Notepad")
WinWaitActive($notepad,"",3)
Send("Learning about automation is fun")

Example04.au3

run("notepad.exe")
WinWaitActive("Untitled - Notepad")
Send("Learning about automation is fun")

Example05.au3

run("notepad.exe")
WinWaitActive("Untitled - Notepad")
Send("!F")

Example06.au3

; First we opened an instance of calculator
run("calc.exe")
$calc=WinWaitActive("Calculator") ; activates the window

; Panes
$controlTopPane = "[CLASS:Static; INSTANCE:2]" ; pane above numbers
$controlNumberPane = "[CLASS:Static; INSTANCE:4]"; numbers pane
; update panes with our text
ControlSetText("Calculator","",$controlTopPane,"Automate with AutoIt!")
ControlSetText("Calculator","",$controlNumberPane,"Yeah!!!")

175 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

;Buttons
$controlOneBtn = "[CLASS:Button; INSTANCE:5]"; one button
$controlTwoBtn = "[CLASS:Button; INSTANCE:11]"; two button
$controlThreeBtn = "[CLASS:Button; INSTANCE:16]"; three button
$controlFourBtn = "[CLASS:Button; INSTANCE:4]"; four button
$controlFiveBtn = "[CLASS:Button; INSTANCE:10]"; five button
$controlSixBtn = "[CLASS:Button; INSTANCE:15]"; six button
$controlSevenBtn = "[CLASS:Button; INSTANCE:3]"; seven button
$controlEightBtn = "[CLASS:Button; INSTANCE:9]"; eight button
$controlNineBtn = "[CLASS:Button; INSTANCE:14]"; nine button
$controlZeroBtn = "[CLASS:Button; INSTANCE:6]"; nine button

; an array of the buttons that we can loop through to update them all
dim
$btnArray[10]=[$controlOneBtn,$controlTwoBtn,$controlThreeBtn,$controlFourBtn,$controlFiveBtn,$c
ontrolSixBtn,$controlSevenBtn,$controlEightBtn,$controlNineBtn,$controlZeroBtn]

$text="A" ; used to update all buttons
; The loop that sets all the buttons to "A"
for $a=0 to ubound($btnArray)-1
ControlSetText("Calculator","",$btnArray[$a],$text)
next

Example07.au3

; First we opened an instance of calculator
run("calc.exe")
$calc=WinWaitActive("Calculator") ; activates the window

; Panes
$controlTopPane = "[CLASS:Static; INSTANCE:2]" ; pane above numbers
$controlNumberPane = "[CLASS:Static; INSTANCE:4]"; numbers pane
; update panes with our text
ControlSetText("Calculator","",$controlTopPane,"Automate with AutoIt!")
ControlSetText("Calculator","",$controlNumberPane,"Yeah!!!")

;Buttons
$controlOneBtn = "[CLASS:Button; INSTANCE:5]"; one button
$controlTwoBtn = "[CLASS:Button; INSTANCE:11]"; two button
$controlThreeBtn = "[CLASS:Button; INSTANCE:16]"; three button
$controlFourBtn = "[CLASS:Button; INSTANCE:4]"; four button
$controlFiveBtn = "[CLASS:Button; INSTANCE:10]"; five button
$controlSixBtn = "[CLASS:Button; INSTANCE:15]"; six button
$controlSevenBtn = "[CLASS:Button; INSTANCE:3]"; seven button
$controlEightBtn = "[CLASS:Button; INSTANCE:9]"; eight button
$controlNineBtn = "[CLASS:Button; INSTANCE:14]"; nine button

176 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

$controlZeroBtn = "[CLASS:Button; INSTANCE:6]"; nine button

; an array of the buttons that we can loop through to update them all
dim
$btnArray[10]=[$controlOneBtn,$controlTwoBtn,$controlThreeBtn,$controlFourBtn,$controlFiveBtn,$c
ontrolSixBtn,$controlSevenBtn,$controlEightBtn,$controlNineBtn,$controlZeroBtn]

$text="A" ; used to update all buttons
; The loop that sets all the buttons to "A"
for $a=0 to ubound($btnArray)-1
ControlSetText("Calculator","",$btnArray[$a],$text)
next

sleep (2000) ; small delay to view original results
send("!2") ; invoke scientific calc mode ALT + 2 shortcut
$radiansRadio="[CLASS:Button; INSTANCE:30]" ; the radians radio button Au3Info
WinWaitActive("Calculator"); wait for new mode to become active
ControlCommand("Calculator","",$radiansRadio,"check"); select radian radio

Example08.au3

Sleep (2000)
$mousePos=MouseGetPos()
$mouseX=$mousePos[0]
$mouseY=$mousePos[1]
mousemove($mouseX+100,$mouseY+100)

Example09.au3

#include<Excel.au3>
$oExcel = _Excel_Open()

Example10.au3

#include<Excel.au3>
$oExcel = _Excel_Open()
$workbook=_Excel_BookNew($oExcel, 3)

Example11.au3

177 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

#include<Excel.au3>
#include<Array.au3>
$oExcel = _Excel_Open()
$workbook=_Excel_BookNew($oExcel, 3)

global $people[3][2] = [["John",34],["Steve",23],["Bob",41]]
_Excel_RangeWrite($workbook,1,$people)

Example12.au3

#include<Excel.au3>
#include<Array.au3>
$oExcel = _Excel_Open()
$workbook=_Excel_BookNew($oExcel, 3)

global $people[3][2] = [["John",34],["Steve",23],["Bob",41]]
_Excel_RangeWrite($workbook,1,$people)

_Excel_BookSaveAs($workbook,@ScriptDir&"\names.xlsx",default,True)
_Excel_BookClose($workbook)

Example13.au3

#include <MsgBoxConstants.au3>
#include<Excel.au3>
#include<Array.au3>
$oExcel = _Excel_Open()
$workbook=_Excel_BookNew($oExcel, 3)

global $people[3][2] = [["John",34],["Steve",23],["Bob",41]]
_Excel_RangeWrite($workbook,1,$people)

_Excel_BookSaveAs($workbook,@ScriptDir&"\names.xlsx",default,True)
_Excel_BookClose($workbook)
MsgBox($MB_OK,"","Workbook closed click okay to reopen")
_Excel_BookOpen($oExcel,@ScriptDir&"\names.xlsx")

Example14.au3

#include <MsgBoxConstants.au3>
#include<Excel.au3>
#include<Array.au3>
$oExcel = _Excel_Open()

178 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

$workbook=_Excel_BookNew($oExcel, 3)

global $people[3][2] = [["John",34],["Steve",23],["Bob",41]]
_Excel_RangeWrite($workbook,1,$people)

_Excel_BookSaveAs($workbook,@ScriptDir&"\names.xlsx",default,True)
_Excel_BookClose($workbook)
MsgBox($MB_OK,"","Workbook closed click okay to reopen")
$newworkbook=_Excel_BookOpen($oExcel,@ScriptDir&"\names.xlsx")
sleep(2000)
$data=_Excel_RangeRead($newworkbook)
_ArrayDisplay($data)

This example uses an image from the AutoIt website that you will need to store in the same directory.
You can find it here: http://www.autoitscript.com/images/logo_autoit_210x72@2x.png

Example15.au3

#include<Excel.au3>
$oExcelApp=_Excel_Open()
$oExcel = _Excel_BookNew($oExcelApp)
$path = @ScriptDir&"\au3logo.png"
$targetRange=$oExcel.ActiveSheet.Range("A1:D10")

func _InsertPictureInRange($path, $targetRange)
; inserts a picture and resizes it to fit the TargetCells range
Dim $p, $t, $l, $w, $h
 ; import picture
 $p = $oExcel.ActiveSheet.Pictures.Insert($path)
 ; determine positions
 With $targetRange
 $t = .Top
 $l = .Left
 $w = .Offset(0, .Columns.Count).Left - .Left
 $h = .Offset(.Rows.Count, 0).Top - .Top
 EndWith
 ; position picture
 With $p
 .Top = $t
 .Left = $l
 .Width = $w
 .Height = $h
 EndWith
 $p = "Nothing"
EndFunc
_InsertPictureInRange($path, $targetRange)

http://www.autoitscript.com/images/logo_autoit_210x72@2x.png

179 | P a g e
Jayme Fishman, Copyright 2015 all rights reserved

i “Jon” runs the AutoIt forum referenced in the text and does not include his last name in his posts.

