
1

CodeCrypter and MetaCode Files Q & A (FAQ)
© by RTFC, 2013-21.

Q. What steps do I need to take to get my script encrypted?
A. See the separate pdf: “HowToCodeCrypt”.

First insert "#include MCFinclude.au3" in your script immediately above where
you want the encryption to start. Then run CodeScanner on it, and make sure
there are no major errors in your code (like missing #includes, for example). If

your script is okay and the CodeScanner switch WriteMetaCode wasn't already
on, switch it on and run a second scan. The MCF# basis files and arrays will now

be written out. Afterwards, close CodeScanner and start CodeCrypter. Under the
<Main> Tab, tick options <Write MCF0> and <BackTranslate>. Press the
<Source> button and load your original script's name, then press <Run>. When

Codecrypter completes without errors, a new file MCF0test.au3 will have been
created in the same directory as your original script. Make sure it performs

exactly as your original version. If so, untick the original checkboxes in
CodeCrypter and enable Encrypt instead. You may also wish to set specific
Encryption options (such as which key ID(s) to use!) under the <Encrypt> Tab.

Finally, press <Run>, and if all goes well, a new MCF0test.au3 is produced. This
is the encrypted version of your script. Test it thoroughly again. If there are any

errors or other issues, see below.

Q. Do I need to press DataDump in CodeScanner, after running a scan,
to write out the files for MCF or CodeCrypter?

A. No, just enable WriteMetaCode in the Settings panel before you (re)scan; the
relevant data will be written out automatically. Activating DataDump without this
setting enabled will not write out the MCF#.txt files, just the arrays (including

many you don't need for MCF).

Q. I ran CodeScanner on my target script, but I cannot find the

MetaCode output. Where is it?
A. CodeScanner only writes out MCF files when WriteMetaCode in the Settings
panel is enabled. It then creates a subdirectory below your target file's directory

called <targetfilename.au3>.CS_DATA to store those files. This subdirectory is
often referred to as "CodeScanner's datadump directory."

Q. Do I create MCF0 (the "Single Build") from CodeScanner or from

CodeCrypter? What's the difference?
A. CodeScanner and CodeCrypter both call the same MCF function (called:

_CreateSingleBuild), but CodeScanner provides only the default options. If you
want more control over how much original code is kept in MCF0.txt, use
CodeCrypter instead, and select options under the Tab "Single-Build."

Q. I ran CodeScanner and created MCF0.txt from there. Now do I load
MCF0.txt in Codecrypter?
A. No, you specify the same target file in CodeCrypter and CodeScanner.

Codecrypter then looks for CodeScanner's datadump subdirectory based on that

2

filename. CodeCrypter doesn't actually load your original target file at all, it just
needs its name to find the associated CS_data subdirectory.

Q. Sometimes when I run BackTranslate, it takes much longer than
usual, and displays update messages it usually doesn't. What is
happening?

A. BackTranslate always checks that a Single Build (MCF0.txt) exists, and that it
was generated after the regular MetaCode target file (MCF1.txt) was written. If

the Single Build does not exist or is out-of-date, it first calls MCF's
_CreateSingleBuild function to regenerate MCF0.txt, and this produces extra
update messages.

Q. Why do I need to BackTranslate anyway? Won't I just end up with
the same script?
A. Strictly speaking, you don't need to BackTranslate first. But if you

immediately translate your GUI strings, obfuscate your variables, and encrypt
everything, and the final script (which looks like garbage) doesn't work, it's

going to be hard to identify the problem. If the BackTranslated script does not
work, then nothing you change afterwards is going to fix that. If your script

passes BackTranslate but fails when you change things, you can start narrowing
down which change is causing your script to fail. See further down on how to do
this methodically.

Furthermore, BackTranslate acts as filter to create a single portable file without
includes or redundant parts, so it does have its own purpose.

Q. Help! My BackTranslation produced by CodeScanner does not work.

What do I do now?
A. Start up CodeCrypter, enable "Create MCF0" then navigate to Tab "Single

Build" and disable all options, then press <Run> (under the "Main" Tab).
Sometimes CodeScanner and CodeCrypter will make mistakes when deciding
whether or not your script needs a particular global variable or UDF definition,

and throw out code you actually do need. If the problem persists, then you'll
need to analyse more deeply. Does the test script start up at all? How far does it

get? Has any content changed? MCF is still a work in progress, and there are
valid AutoIt constructs that it cannot handle (see the Remarks sections in MCF
and CodeCrypter). But if you find an obvious bug, please let me know, and I'll

try and fix it if I can.

Q. Translation, Obfuscation, Encryption? Too many steps! I just want to
make one tiny change. Can't you make it simpler?

A. Sure. Copy the text files of your arrays *Used.txt to text files *New.txt and
make your change in the *New.txt file(s). Then call _CreateNewScript($path,

True) directly. You' re done. Of course, one tiny change is probably more quickly
implemented by editing the original script directly...

3

Q. When would I be using "Create New"?
A. This option allows you to create a new script directly from the *New content

arrays, without any alterations by MCF or CodeCrypter. You need it if you
develop some new way to change the content arrays, and want to build a new

script that incorporates those changes. Of course, you still need to start by
creating the Single Build MCF0.txt

Q. I want to translate my GUI into a different language, but editing
several arrays by hand is too much work. Is there no easier way?

A. Firstly, never change more than you have to. If you are just translating the
external appearance of your script (the GUI or console the user interacts with),

you don't need to translate the variables or the UDF names at all. When creating
MCF0, all arrays with suffix "Transl" are prefilled with the same data as in the
arrays with suffix "Used," so if you select Translate without changing anything,

you'll achieve a simple BackTranslation, that is, rebuilding your original script as
a single file. If you only change strings, the rest will be rebuilt with the original

content.
Secondly, all arrays are written out to text file repeatedly, and read in again
whenever you press <Run> in CodeCrypter, or when you call an MCF function

directly with its second parameter (force_refresh) set to True. So never handle
arrays directly, always edit the text files instead. For translation, just open the

file stringsTransl.txt in your favourite editor, copy everything (or the GUI part)
to the clipboard, dump it in Google Translate's left window, select and generate
the output language, and copy the results back into stringsTransl.txt. If you're

only translating a subset, make sure all lines still line up correctly with the
original in stringsUsed.txt (line number = array index = MetaCode tag ID), and

save the file. MCF/Codecrypter reloads the file into array $stringsTransl[], copies
it to $stringsNew[] for script rebuilding, and you're done.

Q. How can I use (non-English) special characters in my scripts in the

context of CodeScannerCrypter?
Q. I've done a string Translation, but all special characters are garbled
after CodeCrypter’s pass. Why?

A. This has to do with file encoding. In order for the CodeScannerCrypter
environment to handle these characters correctly, first save the original script as

UTF8-encoded (see option Encoding under Scite’s File menu options), then run
CodeScanner on it with option “UniCode Support” ticked in the Processing
Options (see Settings menu). Processing will be significantly slower, but

CryptoNG is now patched to correctly encrypt and decrypt UTF-8 characters. If
you are manually editing StringTransl.txt or StringsNew.txt in a text editor,

again ensure you save it as UTF-8, not standard “Windows 1252.”

Q. I've done a string Translation, and now my script can't find any of its
work files anymore. What gives?

A. Be careful which strings you translate, and always check the output of
whatever automatic translator you use. Google Translate, for example, may

insert an additional space before/after a (back)slash, so any string specifying a
directory path will be mangled. Same with filenames without extension that are

4

also valid English words. Ditto for strings such as "\\PhysicalDrive0". See the
earlier rule: never change more than you have to.

Q. I've done a string Translation, and now all my DllCalls fail. WTF?
A. Be careful which strings you translate. Dll calls require string parameters that
define the next parsed parameter type, strings such as "short," "long," and

"word" that are also normal words in English. So if you translate the entire
stringsTransl.txt file, those words may end up as "kurz," or "longue," or

"palabra," depending on your chosen language. And the dll that is handling your
call is probably none too happy about that.

Q. While working with the CodeCrypter script, I changed my dynamic

keytype definition in MCFinclude.au3, but the change is not
implemented when I press <Run>. Why?
A. Any change made to MCFinclude.au3 has to be performed before running

CodeScanner (not CodeCrypter). Otherwise it won't be incorporated in the
MCF# files, nor in MCF0, nor in CodeCrypter itself (if it was already running

before you edited MCFinclude.au3).

Q. While working with CodeCrypter.exe, I changed my dynamic keytype
definition, but the change is not implemented when I press <Run>.

Why?
A. If you compiled CodeCrypter, it will have incorporated MCFinclude.au3 in the

state it was last saved in prior to compilation. Either recompile CodeCrypter or
run the CodeCrypter script from Scite. See also the previous answer.

Q. I wish to use a macro as my keytype definition, but decryption has to

work on the user's machine, not on my own machine where I encrypt
the script. Is this possible?
A. Definitely. In CodeCrypter, navigate to Tab "Encrypt" and set your keytype ID

number (the $CCkey array index where you stored your macro call, in
MCFinclude.au3). Then press the "Decryptor" button. The macro will be executed

and you'll see two blue text strings. The top one is what the macro just
returned, the bottom one is what MCF will use to encrypt your script with. If you
want this decryption key to be different from the top entry, just type the

expected response twice (to ensure no typos) in the bottom two boxes (switch
boxes by pressing Tab / Shift-Tab). Then press "Ok." You can check the result by

pressing the "Decryptor" button again; now the second blue-text box should
contain the string you just typed. Do not close CodeCrypter or your typed entry
will be forgotten (CodeCrypter intentionally never stores decryption keys).

Pressing <Run> will produce a script that won't function in your own
environment; it will work only on whatever environment(s) your selected macro

returns the expected response you provided. Note: be extra careful when typing
case-sensitive responses.

5

Q. What happens if my keytype definition returns an empty string in the
user's environment?

A. An empty string will trigger a password user query dialog at startup. Unless
the user knows the expected response (unlikely), the script won't proceed.

Q. Why are lines containing macros @error or @extended never

encrypted?
A. This is an AutoIt limitation first flagged by user MagicSpark. CodeCrypter

(well, MCF actually) replaces original code phrases with Execute statements
wrapped around a decryption call. Unfortunately the AutoIt language processor
resets the @error and @extended macros to zero at the start of handling each

native function, so the previous contents of @error and @extended are lost
before Execute can evaluate it. Therefore, to preserve full functionality of your

script, any line containing either of those two macros is kept unencrypted.

Q. What lines in my script are never encrypted with my chosen key(s)?
A. The following lines have issues that CodeCrypter cannot handle:

 All lines above MCFinclude.au3
 the contents of MCFinclude.au3 itself (a fixed-key encryption is used here;

note that no decryption keys are stored here, only the definitions of how
to obtain them at run-time).

 lines containing @error/@extended (these would lose their state prior to

evaluation)
 object queries and direct object method assignments (but object methods

are supported)
 multiple variable declaration+definition by call on a single line (
 using FileInstall (this is an AutoIt limitation)

In addition, trouble can be expected for:
 lines containing Assign, Eval, IsDeclared, Execute (self-modifying/-

evaluating code); these may or may not work properly after encryption,
especially if obfuscation is also enabled

 UDF parameter default strings (Func _MyFunc ($stringvar =

"defaultstring"))
 multi-processing UDFs that relaunch a script subsection (these would lack

MCFinclude.au3)
 applying indirection to variables that switch usage between single variant

and array

Q. How much slower will my new translated/obfuscated/encrypted
script execute?

A. That depends:
1. There's no extra work if you just replace strings and/or names of variables

and UDF names. So translationwill not slow down your new script at all.
2. Obfuscation uses numerous permutations of a fairly long random hex-

string; this implies that AutoIt’s internal variable look-up will, on average,

take slightly longer, as all variable and/or function names now look
incredibly similar, especially at the front (which slows down the search

algorithm a bit).

6

3. Indirection adds extra calls to a few tiny, one-line UDFs, so the overhead
of indirection proper (or combined with obfuscation) will be negligible.

4. Decryption, however, is a different matter. Not only is the original code
replaced with a decryption step, but the decrypted "code as string" then

has to be executed (indirect call), so that's at least twice as much work as
before, possibly more. If you decide to nest your encryption (fixed-key
encryption of your dynamic key encryption, to hide your parsed keytype),

you add a whole second decryption step plus "Execute" call. Furthermore,
If you change the code structure through indirection prior to encryption,

you add many more calls that are all going to be encrypted. All of this
adds up. Only you can decide how much slowdown is acceptable.
Unfortunately, some scripts (with tight event loops, or timed calls, like

games and media players) cannot tolerate much delay.
On the positive side, you can adjust the proportion of encrypted code down to

any percentage, reducing the amount of extra processing again. Also, there's no
additional overhead for using multiple dynamic keys instead of one.

Q. Processing speed is not a limiting factor. Do I encrypt as much as

possible, as little as possible, or somewhere in between?
A. That depends on whether you just want to stop the script from working

without the key or password (encrypt a few percent), or protect as much of your
intellectual property as possible (encrypt everything).

Q. Processing speed IS a limiting factor in how much I can encrypt, and
I don't want to encrypt every N-th line or a random proportion, but

some specific UDFs that contain all my brilliant ideas and code design.
Any solution?
A. Navigate to the <Encrypt> Tab, and press <UDFs> in the bottom right panel.

A new window is opened that lists all code sections (main script and UDFs) for
which encryption is optional (remember that some MCFinclude UDFs are always

encrypted, and any UDFs preceding MCFinclude cannot be encrypted). Next to
each listed item is a checkbox (default: all enabled). Simply uncheck each UDF
you do not wish to encrypt (press <Esc> to cancel without storing your

settings). When you press <Return>, your new settings are stored, and will be
reloaded in a future CodeCrypter session. This UDF selection list acts as a filter

on the MCF encoding for phrases (mainly function calls; strings encryption is
not affected). Note that this filter is always applied in encryption; it does not
depend on the state of the Subset checkbox in the bottom-right panel of the

<Encrypt> Tab. You just won't notice its effect until you start deselecting UDFs
from the list.

Q. I want to encrypt only some specific individual lines, not entire UDFs.

How do I do that?
A. This will require some effort on your part. First Run Codecrypter with full

encryption, with subsets disabled (so encrypting all lines). You now have two
same-sized arrays: $phrasesUsed and $phrasesEncryp. Then you figure out at

which line of phrasesUsed.txt your important code begins, and at which line it
ends (or collect the line numbers of the isolated lines you wish to encrypt). Now
you write a tiny script that:

7

 copies text file phrasesUsed.txt to file phrasesNew.txt
 calls _readCSdatadump(<{yourtarget}.CS_DATA subdir>) to load all

arrays in memory
 fills array $phrasesNew from array $phrasesEncryp, but only from the first

to the last phrase of your important code!
 calls _FileWriteFromArray("phrasesNew.txt",$phrasesNew,1) (you need

#include <File.au3> for that) to write out array $phrasesNew to file

phrasesNew.txt (don't forget the third parameter "1", or everything will be
misaligned and fail).

Then you fire up CodeCrypter, enable CreateNew, and press <Run>. You're
done.

Q. How secure is the encryption when you store the fixed key that

encrypts MCFinclude.au3 inside MCFinclude.au3 itself? Won't an
attacker just bootstrap-decrypt the script in two passes instead of one?
A. Not possible. The fixed-key encryption is to prevent casual inspection to

reveal the keytype definitions, that is, how you obtain your decryption key at
runtime. A determined attacker will be able to figure out that you are, for

example, using keytype 1, which means a password user query dialog box will
be triggered at runtime (which is obvious to figure out anyway). But that's it.

The password is itself never stored anywhere (other than existing briefly in RAM
memory while CodeCrypter is encrypting).

The crucial safety factor is access, not to the programme but to the user

environment. For example, if you choose to encrypt with the C-drive serial
number of your end user's machine, and the attacker is able to log in to that

machine in secret and obtain that serial number, all bets are off. The same goes
for user names, IP addresses, stored signature files, Registry key, etc. And a
user password is only as safe as the user keeps it; if they have it written down

on a note on their keyboard and they keep their office door unlocked when
they're gone, game over. You'll have to be creative, and tailor a solution to the

specific circumstances of your target environment. Perhaps a combination of
something user-specific, something machine-specific, and your own web server's
response to the programme's unique serial number?

Q. Lets say a "heavy" encryption method is used to only run on a certain

computer (with an environment-dependent key), and somehow
someone gets a hold of that .exe. Would the data still be injected
unencrypted into memory when that person trys to run it? (from the

CodeCrpyter thread, question by member CodeFOB)
A. The decryption engine itself always runs when the exe is run, regardless of

where or by whom it is run, but this does not matter! The beauty of this
decryption is that an attacker can study the decryption engine for a lifetime, and
still be unable to discover either the decryption key or your plaintext script,

providing they do not have access to the original environment where the
encrypted script or .exe is supposed to run. In the worst-case scenario, a

determined hacker might be able to determine the type(s) of information your
programme queries from its environment to obtain one or more decryption keys,

but their content (user password, user name, drive serial number, fixed IP
address, any AutoIt macro or UDF you write yourself) will be different when the
attacker runs their stolen .exe elsewhere. So each decryption step is still

8

executed anywhere, but (providing you select or define your decryption key
wisely) only a single machine and/or user will produce the decryption key with

which the script was originally encrypted.

Example:
You can think of the array $CCkey in MCFinclude.au3 as a list of instructions to
construct a secret phrase (the decryption key). For example:

 go to the library, find the first red book on the top shelf in the cabinet left
of the largest window, take the 7th word of the 3rd paragraph on page

123;
 use the name of the only black pet in the house;
 take the first letter of each word of the saying on the plaque over the

kitchen door
 take the word for the material of the bedspread in the main guest room

 etcetera (you can define these instructions yourself, adding as many as
you like)

When your proverbial hacker steals your executable, even though this list is

itself also encrypted (with a fixed key; there's no other way), they may be able
to decipher the list itself, or monitor the location in RAM where the result of

these instructions is stored. But such an instruction itself no longer makes sense
if it's referenced in any other house! There, the guestroom bedspread may be a

different type of cloth, there may not be any house pet, let alone a black one, or
even if so, it's name is likely different. Thus your hacker can monitor all they
want, but garbage in = garbage out, meaning the decryption key does not

match, therefore no sensible AutoIt code comes out of the decrpytor, just
gibberish that causes the programme to halt immediately. So yes, "the data"

(that is, the encrypted line and the "secret phrase" as extracted locally from the
work environment) are indeed "injected in memory", but this information is
completely useless when the secret phrase is different because the environment

is different. There is no hint whatsoever inside your script what name your black
pet actually has; there never was, and never will be. What is absent to begin

with cannot ever be extracted. Your only responsibility is to select or define
an instruction (or combination of several) that is unique (or very rare), and
unobtainable without access to the original environment.

The above analogy thus highlights the importance of choosing a sufficiently

strong key; a user password can be strong protection unless the user's notebook
with their list of passwords was also stolen; many people will have the same
username, and so forth, so it makes sense to use several keys (either strung

together or used cyclically (CodeCrypter allows you to select this option too),
because the chances of another house having a black pet with the same name

AND a red book on the top shelf next to the window AND a woollen bedspread in
the guest room are fairly remote.

In summary, low-level debugging, or access to RAM or your encrypyed

exe is totally insufficient; the only way to break the encryption is to gain access
to the original environment to determine those actual bits of information that

your exe extracts from it at runtime to build the decryption key.

9

Q. My new script does not work. How can I identify the cause?
A. Methodically eliminate all factors, dear Watson:

Start with CodeScanner. Were any issues identified that might affect the script's
proper functioning? Does the original script actually run?

Next up: BackTranslation. If the BackTranslated script does not work, the
problem likely lies in the initial MetaCode translation step. Create a new MCF0

while retaining all supposedly "redundant" parts (disable the Single-Build code-
pruning options), and see if that works when BackTranslated (if not, you're in

trouble).

If the BackTranslation is okay, switch on one alteration you implemented at a

time, rebuild a new script, and see if it runs. That should tell you whether the
problem lies in Translation, Obfuscation, Indirection, or Encryption.

All content alterations involve array manipulation. Check all array text files on
length; the number of lines should be equal for all files with the same prefix.

Even a single entry lost or added causes misalignment, often with disastrous
consequences. For strings, ensure they are all enclosed in single- or double

quotes. For variables, ensure that all names are prefixed with "$". For macros,
ensure that all names are prefixed with "@".

If none of this resolves the issue, then the most likely cause for failure is
encryption. Switch off nested keys and multikeys, and keep them off. Now try

and encrypt strings only (if enabled previously), then phrases only (if enabled
previously). If that does not narrow down the problem, enable Subset encryption

and encrypt only a tiny fraction of the code, such as 1 line in 100, or a few
percent. This should tell you whether the extra processing load is to blame. (If
so, gradually increase the proportion up to the point where the script starts

failing again, then maybe use half that proportion).

If you're still no nearer to a solution, it's time for more drastic measures. Create
a working BackTranslated script and a non-working encrypted one in the same
directory. Open both files in Scite and run AU3Check to see whether there are

any syntax errors. If not, run the encrypted version to check whether it starts up
at all, and if so, how far it gets. Alternatively, you can start replacing parts; first

the main code section, then each clear-code (working) UDF definition with their
encrpyted counterpart, one at a time. If the problem is localised, it should be
identifiable this way, although it may take time.

Finally, some valid AutoIt code simply does not work after passing through

MCF's digestive tract. A real example: Suppose a script compares the speed of
different sorting algorithms. Each algorithm has its own UDF, called from the
main script. Each of the UDF names ends in "Sort" ("BubbleSort", "QuickSort",

"MoronSort", etc.). The main script defines an array filled only with the prefix,
that is, the part that is different for each name ($name[1]="Bubble",

$name[2]="Quick", ...) and calls each in turn in a For-Next loop (with counter
$n) that calls each UDF like this: Execute($name[$n] & "Sort"). Now
suppose we obfuscate the UDF names. Neither the strings in array $name[] nor

string "Sort" in the Execute call will match the original UDF names, so they are
all kept as strings instead of being replaced by {funcU#} MetaCode tags.

Worse, to CodeCrypter it will appear as if the main script never calls any of the

10

defined *Sort functions, so unless prevented, it won't even include them in the
Single-Build (MCF0). Of course, once this problem is identified, we can easily fix

it by storing the full names in the array instead and removing the "Sort" suffix
from the string parsed to Execute(). That way, the strings will be recognised as

UDF names, the UDF definitions will be retained as active, and obfuscation will
replace the original name both in the UDF definition and in array $name.

Latest revision: 03 December 2021.

