Jump to content

Search the Community

Showing results for tags 'rsa'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • General
    • Announcements and Site News
    • Administration
  • AutoIt v3
    • AutoIt Help and Support
    • AutoIt Technical Discussion
    • AutoIt Example Scripts
  • Scripting and Development
    • Developer General Discussion
    • Language Specific Discussion
  • IT Administration
    • Operating System Deployment
    • Windows Client
    • Windows Server
    • Office

Categories

  • AutoIt Team
    • Beta
    • MVP
  • AutoIt
    • Automation
    • Databases and web connections
    • Data compression
    • Encryption and hash
    • Games
    • GUI Additions
    • Hardware
    • Information gathering
    • Internet protocol suite
    • Maths
    • Media
    • PDF
    • Security
    • Social Media and other Website API
    • Windows
  • Scripting and Development
  • IT Administration
    • Operating System Deployment
    • Windows Client
    • Windows Server
    • Office

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Location


WWW


Interests

Found 4 results

  1. My RSA script, 128 bit and lower fast (for UDF attachment) Using : "RSATool2v17.exe" open and input (E) key and Keysize (Bits) "128", Generate "P, Q, D". Copy "P, Q, D" to my code ; Script Start - Add your code below here #include <String.au3> #include "BigNum.au3" Global $P, $Q, $SelectBase = 64 $base64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" ;base64 ;Sexagesimal $base60_2 = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwx" ;sexagesimal $base32 = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567" ;base32 $base24 = "0123456789ABCDEFGHJKLMNP" ;base24 $base16 = "0123456789ABCDEF" ;hex ;Duodecimal system or dozenal $base12 = "0123456789AB" ;duodecimal $base10 = "0123456789" ;base10 $base8 = "01234567" ;oct $base2 = "01" ;binary $P = _BigNum_Add($P, "18429553113751821539") $Q = _BigNum_Add($Q, "14963134653035728619") $n = _BigNum_Mul($P, $Q) $PHI = _BigNum_Mul(_BigNum_Sub($P, 1), _BigNum_Sub($Q, 1)) $e = _NumToDec("10001100011000110001", $base16) $D = "263455903565562556840568120179103558669" ConsoleWrite(@CRLF) ConsoleWrite("P: " & NumberBase($P) & @CRLF) ConsoleWrite("Q: " & NumberBase($Q) & @CRLF) ConsoleWrite("N: " & NumberBase($n) & @CRLF) ConsoleWrite("PHI: " & NumberBase($PHI) & @CRLF & @CRLF) ConsoleWrite("D: " & NumberBase($D) & @CRLF) ConsoleWrite("E: " & NumberBase($e) & @CRLF & @CRLF) $Message = _NumToDec(_StringToHex("TEST MESSAGE"), $base16) If StringLen($Message) > StringLen($n) Then Exit (1) $c = _BigNum_PowerMod($Message, $e, $n) $D = _BigNum_PowerMod($c, $D, $n) ConsoleWrite("C: " & NumberBase($c) & @CRLF) ConsoleWrite("D: " & _HexToString(_DecToNum($D, $base16)) & @CRLF) ConsoleWrite(@CRLF) ;==================================================================================== ;~ Func modpow($a, $b, $c) ;~ $res = 1 ;~ While $b > 0 ;~ ;/* Need long multiplication else this will overflow... */ ;~ If Mod(StringRight($b, 1), 2) Then ;If BitAND($b,1) Then ;~ $res = _BigNum_Mod(_BigNum_Mul($res, $a), $c) ;~ EndIf ;~ $b = BitShift($b, 1) ;~ $a = _BigNum_Mod(_BigNum_Mul($a, $a), $c) ; /* Same deal here */ ;~ WEnd ;~ Return $res ;~ EndFunc ;==>modpow Func NumberBase($num, $base = $SelectBase) If $base = 10 Then Return _DecToNum($num, $base10) ElseIf $base = 16 Then Return _DecToNum($num, $base16) ElseIf $base = 60 Then Return _DecToNum($num, $base60_2) ElseIf $base = 64 Then Return _DecToNum($num, $base64) EndIf Return $num EndFunc ;==>NumberBase Func _DecToNum($iDec, $Symbol) Local $Out, $ost $Symbol = StringSplit($Symbol, '') If @error Or $Symbol[0] < 2 Then Return SetError(1, 0, $iDec) Do $ost = _BigNum_Mod($iDec, $Symbol[0]) $iDec = _BigNum_Div(_BigNum_Sub($iDec, $ost), $Symbol[0]) $Out = $Symbol[$ost + 1] & $Out Until Not Number($iDec) Return SetError(0, $Symbol[0], $Out) EndFunc ;==>_DecToNum Func _NumToDec($num, $sSymbol, $casesense = 1) Local $i, $iPos, $Len, $n, $Out $Len = StringLen($sSymbol) If $Len < 2 Then Return SetError(1, 0, $num) $n = StringSplit($num, '') For $i = 1 To $n[0] $iPos = StringInStr($sSymbol, $n[$i], $casesense) If Not $iPos Then Return SetError(2, 0, $num) $Out = _BigNum_Add(_BigNum_Mul($iPos - 1, _BigNum_Pow($Len, $n[0] - $i)), $Out) Next Return SetError(0, $Len, $Out) EndFunc ;==>_NumToDec ; #FUNCTION# ;==================================================================================== ; ; Name...........: _BigNum_PowerMod ; Description ...: Modular Exponentiation Mod($n^$e, $k) ; Syntax.........: _BigNum_Pow($n, $e, $k) ; Parameters ....: $n - Positive StringNumber: Digits"0"..."9" ; $e - Positive StringNumber: Exponent ; $k - Positive StringNumber: Modulus ; Return values .: Success - Result Mod($n^$e, $k) ; Failure - -1, sets @error to 1 if $n is not a positive valid StringNumber ; -1, sets @error to 2 if $e is not a positive valid StringNumber ; -1, sets @error to 3 if $k is not a positive valid StringNumber ; Author ........: jchd ; Date ..........: 17.12.13 ; Remarks .......: Fractional exponents not allowed - use BigNum_n_root instead. ; ;=============================================================================================== Func _BigNum_PowerMod($n, $e, $k) If Not __BigNum_IsValid_3($n, $e, $k) Then Return SetError(1, 0, -1) Local $res = "1" While $e <> "0" If Mod(StringRight($e, 1), 2) Then $res = _BigNum_Mod(_BigNum_Mul($res, $n), $k) $e = _BigNum_Sub($e, "1") EndIf $n = _BigNum_Mod(_BigNum_Mul($n, $n), $k) $e = _BigNum_Div($e, "2") WEnd Return $res EndFunc ;==>_BigNum_PowerMod Func __BigNum_IsValid_3($sX, $sY, $sZ) If StringRegExp($sX, "[^0-9.-]") Or StringRegExp($sY, "[^0-9.-]") Or StringRegExp($sZ, "[^0-9.-]") Then Return False Return True EndFunc ;==>__BigNum_IsValid_3 RSA 2 (TEST NOW).zip
  2. I found this article and enjoyed it so much I had play with some code since the numbers are small enough. https://thatsmaths.com/2016/08/11/a-toy-example-of-rsa-encryption/ Standard Encryption's vs RSA Encryption (Public Key Encryption) Fundamental Differences If you read that and couldn't immediately clarify the difference then let me blow your mind because its simple: STANDARD ENCRYPTION'S: ORIGINAL_DATA + Password(or KEY) = Encrypted DATA Then to decrypt -> Encrypted DATA + (SAME Password(or SAME KEY)) = ORIGINAL_DATA RSA: ORIGINAL_DATA + Password(or PUBLIC_KEY) = Encrypted DATA Then to decrypt -> Encrypted DATA + (DIFFERENT Password(or PRIVATE_KEY)) = ORIGINAL_DATA Are we all caught up? Did the colors help? I think they did That's crazy right? Don't answer. It is. And crazier its used EVERY TIME we make a secure connection to a server over the internet. But here's the craziest part to me that I recently got clarity on from the toy example and that is the simplicity of this very very very very important algorithm that has yet to be cracked (fingers crossed): Mod($vData ^ $key, $n) So ya. That's it. That's the magic algorithm. 3 values. Oh and $n is also a shared known value that will be in the certificate with the public key that your browser reads when it makes a connection: That's just mind blowing to me so couldn't resist getting something going in AUT. After playing with this code, I got a much better understanding of how its not just that algorithm that makes this whole thing possible. The numbers that we pick to form the public key and n are just as important and also how important it is to be random! Let me know if you have any problems. Enjoy! #include <array.au3> _Toy_RSA_Example() ;https://thatsmaths.com/2016/08/11/a-toy-example-of-rsa-encryption/ Func _Toy_RSA_Example() Local $p, $q, $n, $nT, $e, $d Local $aPublicKeys, $aCrypt, $sDecrypt, $sMsg ;Pick two random primes (they will be between 1000-10000) $p = _GetRandomPrime() $q = _GetRandomPrime() $sMsg = 'p= %i \t\t| Prime 1 - [NOT SHARED!]\nq= %i \t\t| Prime 2 - [NOT SHARED!]\n' ;Calculate lowest common multiple $nT = _LCM($p - 1, $q - 1) $sMsg &= 'nT= %i \t| _LCM(p - 1,q - 1) - [NOT SHARED!]\n' ;Calculate n. This is a shared number $n = $p * $q $sMsg &= 'n= %i \t| p * q - [Shared]\n' ;Get a small random list of possible public keys to pick from. Only searching for 100ms $aPublicKeys = _GetPublicKeys($nT) _ArrayDisplay($aPublicKeys, "Possible Public Keys Found") ;Pick a random public (encryption) key from array $e = $aPublicKeys[Random(1, $aPublicKeys[0], 1)] $sMsg &= 'e= %i \t| Public (Encryption) Key - [Shared]\n' ;Generate our private (decryption) key $d = _GetPrivateKey($e, $nT) $sMsg &= 'd= %i \t| Private (Decryption) Key - [NOT SHARED!]\n' ;format our msg (rsa details) to encrypt $sMsg = StringFormat($sMsg, $p, $q, $nT, $n, $e, $d) ;encrypt message $aCrypt = _RSA($sMsg, $e, $n) _ArrayDisplay($aCrypt, 'Encrypted RSA messsage') ;Decrypt array back $sDecrypt = _RSA($aCrypt, $d, $n) MsgBox(0, 'Decrypted RSA messsage', $sDecrypt) EndFunc ;==>_Toy_RSA_Example ;Function will perfrom Mod($v ^ $key, $n) on each char/element. ;Excepts Arrays or Strings. If input is array a string is returned and vice versa. Func _RSA($vDat, $key, $n) Local $bIsStr = IsString($vDat) If $bIsStr Then $vDat = StringToASCIIArray($vDat) For $i = 0 To UBound($vDat) - 1 $vDat[$i] = _Modular($vDat[$i], $key, $n) Next Return $bIsStr ? $vDat : StringFromASCIIArray($vDat) EndFunc ;==>_RSA ;algorithm is from the book "Discrete Mathematics and Its Applications 5th Edition" by Kenneth H. Rosen. Func _Modular($iBase, $iExp, $iMod) ; Mod($v ^ $key, $n) Local $iPower = Mod($iBase, $iMod) Local $x = 1 For $i = 0 To (4 * 8) - 1 If BitAND(0x00000001, BitShift($iExp, $i)) Then $x = Mod(($x * $iPower), $iMod) EndIf $iPower = Mod(($iPower * $iPower), $iMod) Next Return $x EndFunc ;==>_Modular ;Generate a "random" list of possible valid public keys to choose from based on $nT Func _GetPublicKeys($nT, $iMs = 100) Do Local $aKeys[10000] = [0], $iTime = TimerInit() Local $i = (Mod(@SEC, 2) ? Int($nT / 2) : Int($nT / 4)) ; randomize where we start Do If _IsPrime($i) And _IsCoPrime($i, $nT) Then $aKeys[0] += 1 $aKeys[$aKeys[0]] = $i EndIf $i += (Mod(@MSEC, 2) ? 1 : 100) ; randomize step size Until ($i >= ($nT - 1)) Or (TimerDiff($iTime) > $iMs) ReDim $aKeys[$aKeys[0] + 1] Until $aKeys[0] > 5 ; Ive seen 200+ returned sometimes and 0 on others. Make sure we have at least a few choices Return $aKeys EndFunc ;==>_GetPublicKeys ;https://www.geeksforgeeks.org/multiplicative-inverse-under-modulo-m/ - _ModInverse(a,m) Func _GetPrivateKey($a, $m) If ($m = 1) Then Return 0 ; Local $t, $q, $y = 0, $x = 1, $m0 = $m While ($a > 1) $q = Int($a / $m) ;q is quotient $t = $m ; $m = Mod($a, $m) ;m is remainder now, process same as Euclid's algo $a = $t ; $t = $y ; $y = $x - $q * $y ;Update y and x $x = $t ; WEnd Return $x < 0 ? $x + $m0 : $x EndFunc ;==>_GetPrivateKey ;Pick the next nearest prime from a random number (or number you cho0se) Func _GetRandomPrime($iStart = Default) Local $iPrime = ($iStart = Default ? Random(1000, 10000, 1) : $iStart) Do $iPrime += 1 Until _IsPrime($iPrime) Return $iPrime EndFunc ;==>_GetRandomPrime #Region Math Functions Func _IsPrime($n) For $i = 2 To (Int($n ^ 0.5) + 1) If Mod($n, $i) = 0 Then Return False Next Return True EndFunc ;==>_IsPrime Func _IsCoPrime($a, $b) Return _GCD($a, $b) = 1 EndFunc ;==>_IsCoPrime Func _GCD($iX, $iY) Local $iM While 1 $iM = Mod($iX, $iY) If $iM = 0 Then Return $iY $iX = $iY $iY = $iM WEnd EndFunc ;==>_GCD Func _LCM($iX, $iY) Return ($iX * $iY) / _GCD($iX, $iY) EndFunc ;==>_LCM #EndRegion Math Functions You should get a message box displaying the decrypted message with details of the values used: rsa.au3
  3. so there is this post "Holographic Encryption with DARTIS" and the RSA came up. There is _RSA_crypt.7z from autoit-script.ru but the file is not available ( if anyone has the file, please get me a working link ) , so I don't know what or how it was done. My idea is to do the public key / private key (RSA) to exchange the hash/password ( call it what you will ), then, carry the rest of the communication with $CALG_AES_256 or the like. So it'd be doing a hybrid TCP/IP SSL, let's call it TCL 2.5 Anyhow, I need help for the simple reason that I'm quite clueless. CryptoAPI Cryptographic Service Providers may have a clue via the CryptoAPI ( but to me is all just words ). CryptEncrypt function say that: The Microsoft Enhanced Cryptographic Provider supports direct encryption with RSA public keys and decryption with RSA private keys. The encryption uses PKCS #1 padding. On decryption, this padding is verified. The length of plaintext data that can be encrypted with a call to CryptEncrypt with an RSA key is the length of the key modulus minus eleven bytes. The eleven bytes is the chosen minimum for PKCS #1 padding. The ciphertext is returned in little-endian format. so it should be possible from server 2003 / XP onwards. Thank you all who dare to go at it
  4. Anybody knows how I can apply Public-Private Key encryption? I found several threads but they are all outdated Any ideas? I don't think it is included in advapi32 either, which is used by AutoIt atm
×
×
  • Create New...